33,438 research outputs found

    Man/machine interface development for the REMOTEX concept

    Get PDF
    The development of a man/machine interface system that can be used to remotely control a system composed of a transporter base and a force-reflecting, survocontrolled manipulator is reported. The concept features the incorporation of totally remote operation. A simulator is build to optimize man/machine interface requirements

    Development of a Hybrid Simulator for Underwater Vehicles with Manipulators

    Get PDF
    This article describes a hybrid simulation approach meant to facilitate the realization of a simulator for underwater vehicles with one or more manipulators capable of simulating the interaction of the vehicle with objects and structures of the environment. The hybrid simulation approach is first described and motivated analytically, then an analysis of simulation accuracy is proposed, where, in particular, the implications of added mass simulation are discussed. Then, a possible implementation of the proposed architecture is shown, where a robotic simulator of articulated bodies, capable of stable and accurate simulation of contact forces, although unfit to simulate any serious hydrodynamic model, is tightly interfaced with a general purpose dynamic systems simulator that is used to simulate the hydrodynamic forces, the vehicle guidance, navigation, and control system, and also a man-machine interface. Software details and the technicalities needed to interface the two simulators are also briefly presented. Finally, the results of the simulation of three operational scenarios are proposed as qualitative assessment of the simulator capabilities

    Holistic debugging - enabling instruction set simulation for software quality assurance

    Get PDF
    We present holistic debugging, a novel method for observing execution of complex and distributed software. It builds on an instruction set simulator, which provides reproducible experiments and non-intrusive probing of state in a distributed system. Instruction set simulators, however, only provide low-level information, so a holistic debugger contains a translation framework that maps this information to higher abstraction level observation tools, such as source code debuggers. We have created Nornir, a proof-of-concept holistic debugger, built on the simulator Simics. For each observed process in the simulated system, Nornir creates an abstraction translation stack, with virtual machine translators that map machine-level storage contents (e.g. physical memory, registers) provided by Simics, to application-level data (e.g. virtual memory contents) by parsing the data structures of operating systems and virtual machines. Nornir includes a modified version of the GNU debugger (GDB), which supports non-intrusive symbolic debugging of distributed applications. Nornir's main interface is a debugger shepherd, a programmable interface that controls multiple debuggers, and allows users to coherently inspect the entire state of heterogeneous, distributed applications. It provides a robust observation platform for construction of new observation tools

    Multiple man-machine interfaces

    Get PDF
    The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine

    OMV mission simulator

    Get PDF
    The Orbital Maneuvering Vehicle (OMV) will be remotely piloted during rendezvous, docking, or proximity operations with target spacecraft from a ground control console (GCC). The real-time mission simulator and graphics being used to design a console pilot-machine interface are discussed. A real-time orbital dynamics simulator drives the visual displays. The dynamics simulator includes a J2 oblate earth gravity model and a generalized 1962 rotating atmospheric and drag model. The simulator also provides a variable-length communication delay to represent use of the Tracking and Data Relay Satellite System (TDRSS) and NASA Communications (NASCOM). Input parameter files determine the graphics display. This feature allows rapid prototyping since displays can be easily modified from pilot recommendations. A series of pilot reviews are being held to determine an effective pilot-machine interface. Pilots fly missions with nominal to 3-sigma dispersions in translational or rotational axes. Console dimensions, switch type and layout, hand controllers, and graphic interfaces are evaluated by the pilots and the GCC simulator is modified for subsequent runs. Initial results indicate a pilot preference for analog versus digital displays and for two 3-degree-of-freedom hand controllers

    The cyber security learning and research environment

    Get PDF
    This report outlines the design and configuration of the Cyber Security Learning and Research Environment (CLARE). It explains how such a system can be implemented with minimal hardware either on a single machine or across multiple machines. Moreover, details of the design of the components that constitute the environment are provided alongside sufficient implementation and configuration documentation to allow for replication of the environment

    Next generation space robot

    Get PDF
    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies

    Fast Approximate Max-n Monte Carlo Tree Search for Ms Pac-Man

    Get PDF
    We present an application of Monte Carlo tree search (MCTS) for the game of Ms Pac-Man. Contrary to most applications of MCTS to date, Ms Pac-Man requires almost real-time decision making and does not have a natural end state. We approached the problem by performing Monte Carlo tree searches on a five player maxn tree representation of the game with limited tree search depth. We performed a number of experiments using both the MCTS game agents (for pacman and ghosts) and agents used in previous work (for ghosts). Performance-wise, our approach gets excellent scores, outperforming previous non-MCTS opponent approaches to the game by up to two orders of magnitude. © 2011 IEEE

    Man-in-the-control-loop simulation of manipulators

    Get PDF
    A method to achieve man-in-the-control-loop simulation is presented. Emerging real-time dynamics simulation suggests a potential for creating an interactive design workstation with a human operator in the control loop. The recursive formulation for multibody dynamics simulation is studied to determine requirements for man-in-the-control-loop simulation. High speed computer graphics techniques provides realistic visual cues for the simulator. Backhoe and robot arm simulations are implemented to demonstrate the capability of man-in-the-control-loop simulation

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system's status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers' expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
    • …
    corecore