2,036 research outputs found

    Data Science in Healthcare

    Get PDF
    Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management

    Neural network based country wise risk prediction of COVID-19

    Get PDF
    The recent worldwide outbreak of the novel coronavirus (COVID-19) has opened up new challenges to the research community. Artificial intelligence (AI) driven methods can be useful to predict the parameters, risks, and effects of such an epidemic. Such predictions can be helpful to control and prevent the spread of such diseases. The main challenges of applying AI is the small volume of data and the uncertain nature. Here, we propose a shallow long short-term memory (LSTM) based neural network to predict the risk category of a country. We have used a Bayesian optimization framework to optimize and automatically design country-specific networks. The results show that the proposed pipeline outperforms state-of-the-art methods for data of 180 countries and can be a useful tool for such risk categorization. We have also experimented with the trend data and weather data combined for the prediction. The outcome shows that the weather does not have a significant role. The tool can be used to predict long-duration outbreak of such an epidemic such that we can take preventive steps earlie

    Covid-19 vaccination priorities defined on machine learning

    Get PDF
    OBJECTIVE: Defining priority vaccination groups is a critical factor to reduce mortality rates. METHODS: We sought to identify priority population groups for covid-19 vaccination, based on in-hospital risk of death, by using Extreme Gradient Boosting Machine Learning (ML) algorithm. We performed a retrospective cohort study comprising 49,197 patients (18 years or older), with RT-PCR-confirmed for covid-19, who were hospitalized in any of the 336 Brazilian hospitals considered in this study, from March 19th, 2020, to March 22nd, 2021. Independent variables encompassed age, sex, and chronic health conditions grouped into 179 large categories. Primary outcome was hospital discharge or in-hospital death. Priority population groups for vaccination were formed based on the different levels of in-hospital risk of death due to covid-19, from the ML model developed by taking into consideration the independent variables. All analysis were carried out in Python programming language (version 3.7) and R programming language (version 4.05). RESULTS: Patients’ mean age was of 60.5 ± 16.8 years (mean ± SD), mean in-hospital mortality rate was 17.9%, and the mean number of comorbidities per patient was 1.97 ± 1.85 (mean ± SD). The predictive model of in-hospital death presented area under the Receiver Operating Characteristic Curve (AUC - ROC) equal to 0.80. The investigated population was grouped into eleven (11) different risk categories, based on the variables chosen by the ML model developed in this study. CONCLUSIONS: The use of ML for defining population priorities groups for vaccination, based on risk of in-hospital death, can be easily applied by health system managers

    Clinical Studies, Big Data, and Artificial Intelligence in Nephrology and Transplantation

    Get PDF
    In recent years, artificial intelligence has increasingly been playing an essential role in diverse areas in medicine, assisting clinicians in patient management. In nephrology and transplantation, artificial intelligence can be utilized to enhance clinical care, such as through hemodialysis prescriptions and the follow-up of kidney transplant patients. Furthermore, there are rapidly expanding applications and validations of comprehensive, computerized medical records and related databases, including national registries, health insurance, and drug prescriptions. For this Special Issue, we made a call to action to stimulate researchers and clinicians to submit their invaluable works and present, here, a collection of articles covering original clinical research (single- or multi-center), database studies from registries, meta-analyses, and artificial intelligence research in nephrology including acute kidney injury, electrolytes and acid–base, chronic kidney disease, glomerular disease, dialysis, and transplantation that will provide additional knowledge and skills in the field of nephrology and transplantation toward improving patient outcomes

    Management of hepatitis C virus infection in patients with chronic kidney disease: position statement of the joint committee of Italian association for the study of the liver (AISF), Italian society of internal medicine (SIMI), Italian society of infectious and tropical disease (SIMIT) and Italian society of nephrology (SIN)

    Get PDF
    Hepatitis C virus (HCV) infection is now considered a systemic disease due to the occurrence of extra-hepatic manifestations. Among these, the renal involvement is frequent. HCV infection, in fact, is strongly associated with proteinuria and chronic kidney disease (CKD) and negatively affects the prognosis of renal patients. In the last few years, availability of more specific and effective drugs against HCV has dramatically changed the clinical course of this disease. These drugs may provide further advantages in the CKD population as a whole by reducing progression of renal disease, mortality rate and by increasing the survival of graft in renal transplant recipients. The strict pathogenetic and prognostic link between HCV infection and CKD requires an ongoing relationship among the healthcare professionals involved in the treatment of both HCV infection and CKD. Therefore, Scientific Societies involved in the care of this high-risk population in Italy have organized a joint expert panel. The aim of the panel is to produce a position statement that can be used in daily clinical practice for the management of HCV infected patients across the whole spectrum of renal disease, from the conservative phase to renal replacement treatments (dialysis and transplantation). Sharing specific evidence-based expertise of different professional healthcare is the first step to obtain a common ground of knowledge on which to instate a model for multidisciplinary management of this high-risk population. Statements cover seven areas including epidemiology of CKD, HCV-induced glomerular damage, HCV-related renal risk, staging of liver disease in patients with CKD, prevention of transmission of HCV in hemodialysis units, treatment of HCV infection and management of HCV in kidney transplantation

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Cardiovascular diseases prediction by machine learning incorporation with deep learning

    Get PDF
    It is yet unknown what causes cardiovascular disease (CVD), but we do know that it is associated with a high risk of death, as well as severe morbidity and disability. There is an urgent need for AI-based technologies that are able to promptly and reliably predict the future outcomes of individuals who have cardiovascular disease. The Internet of Things (IoT) is serving as a driving force behind the development of CVD prediction. In order to analyse and make predictions based on the data that IoT devices receive, machine learning (ML) is used. Traditional machine learning algorithms are unable to take differences in the data into account and have a low level of accuracy in their model predictions. This research presents a collection of machine learning models that can be used to address this problem. These models take into account the data observation mechanisms and training procedures of a number of different algorithms. In order to verify the efficacy of our strategy, we combined the Heart Dataset with other classification models. The proposed method provides nearly 96 percent of accuracy result than other existing methods and the complete analysis over several metrics has been analysed and provided. Research in the field of deep learning will benefit from additional data from a large number of medical institutions, which may be used for the development of artificial neural network structures
    • …
    corecore