232,563 research outputs found

    Probabilistic reframing for cost-sensitive regression

    Full text link
    © ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Knowledge Discovery from Data (TKDD), VOL. 8, ISS. 4, (October 2014) http://doi.acm.org/10.1145/2641758Common-day applications of predictive models usually involve the full use of the available contextual information. When the operating context changes, one may fine-tune the by-default (incontextual) prediction or may even abstain from predicting a value (a reject). Global reframing solutions, where the same function is applied to adapt the estimated outputs to a new cost context, are possible solutions here. An alternative approach, which has not been studied in a comprehensive way for regression in the knowledge discovery and data mining literature, is the use of a local (e.g., probabilistic) reframing approach, where decisions are made according to the estimated output and a reliability, confidence, or probability estimation. In this article, we advocate for a simple two-parameter (mean and variance) approach, working with a normal conditional probability density. Given the conditional mean produced by any regression technique, we develop lightweight “enrichment” methods that produce good estimates of the conditional variance, which are used by the probabilistic (local) reframing methods. We apply these methods to some very common families of costsensitive problems, such as optimal predictions in (auction) bids, asymmetric loss scenarios, and rejection rules.This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, and TIN 2013-45732-C4-1-P and GVA projects PROMETEO/2008/051 and PROMETEO2011/052. Finally, part of this work was motivated by the REFRAME project (http://www.reframe-d2k.org) granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA) and funded by Ministerio de Economia y Competitividad in Spain (PCIN-2013-037).Hernández Orallo, J. (2014). Probabilistic reframing for cost-sensitive regression. ACM Transactions on Knowledge Discovery from Data. 8(4):1-55. https://doi.org/10.1145/2641758S15584G. Bansal, A. Sinha, and H. Zhao. 2008. Tuning data mining methods for cost-sensitive regression: A study in loan charge-off forecasting. Journal of Management Information System 25, 3 (Dec. 2008), 315--336.A. P. Basu and N. Ebrahimi. 1992. Bayesian approach to life testing and reliability estimation using asymmetric loss function. Journal of Statistical Planning and Inference 29, 1--2 (1992), 21--31.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2010. Quantification via probability estimators. In Proceedings of the 2010 IEEE International Conference on Data Mining. IEEE, 737--742.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2013. Aggregative quantification for regression. Data Mining and Knowledge Discovery (2013), 1--44.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2009. Calibration of machine learning models. In Handbook of Research on Machine Learning Applications. IGI Global, 128--146.A. Bella, C. Ferri, J. Hernández-Orallo, and M. J. Ramírez-Quintana. 2011. Using negotiable features for prescription problems. Computing 91, 2 (2011), 135--168.J. Bi and K. P. Bennett. 2003. Regression error characteristic curves. In Proceedings of the 20th International Conference on Machine Learning (ICML’03).Z. Bosnić and I. Kononenko. 2008. Comparison of approaches for estimating reliability of individual regression predictions. Data & Knowledge Engineering 67, 3 (2008), 504--516.Z. Bosnić and I. Kononenko. 2009. An overview of advances in reliability estimation of individual predictions in machine learning. Intelligent Data Analysis 13, 2 (2009), 385--401.L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Wadsworth.P. F. Christoffersen and F. X. Diebold. 1996. Further results on forecasting and model selection under asymmetric loss. Journal of Applied Econometrics 11, 5 (1996), 561--571.P. F. Christoffersen and F. X. Diebold. 1997. Optimal prediction under asymmetric loss. Econometric Theory 13 (1997), 808--817.I. Cohen and M. Goldszmidt. 2004. Properties and benefits of calibrated classifiers. Knowledge Discovery in Databases: PKDD 2004 (2004), 125--136.S. Crone. 2002. Training artificial neural networks for time series prediction using asymmetric cost functions. In Proceedings of the 9th International Conference on Neural Information Processing.J. Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7 (2006), 1--30.M. Dumas, L. Aldred, G. Governatori, and A. H. M. Ter Hofstede. 2005. Probabilistic automated bidding in multiple auctions. Electronic Commerce Research 5, 1 (2005), 25--49.C. Elkan. 2001. The foundations of cost-sensitive learning. In Proceedings of the 17th International Conference on Artificial Intelligence (’01), Bernhard Nebel (Ed.). San Francisco, CA, 973--978.G. Elliott and A. Timmermann. 2004. Optimal forecast combinations under general loss functions and forecast error distributions. Journal of Econometrics 122, 1 (2004), 47--79.T. Fawcett. 2006a. An introduction to ROC analysis. Pattern Recognition Letters 27, 8 (2006), 861--874.T. Fawcett. 2006b. ROC graphs with instance-varying costs. Pattern Recognition Letters 27, 8 (2006), 882--891.C. Ferri, P. Flach, and J. Hernández-Orallo. 2002. Learning decision trees using the area under the ROC curve. In Proceedings of the International Conference on Machine Learning. 139--146.C. Ferri, P. Flach, and J. Hernández-Orallo. 2003. Improving the AUC of probabilistic estimation trees. In Proceedings of the 14th European Conference on Machine Learning (ECML’03). Springer, 121--132.C. Ferri and J. Hernández-Orallo. 2004. Cautious classifiers. In ROC Analysis in Artificial Intelligence, 1st International Workshop, ROCAI-2004, Valencia, Spain, August 22, 2004, J. Hernández-Orallo, C. Ferri, N. Lachiche, and P. A. Flach (Eds.). 27--36.P. Flach. 2012. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press.G. Forman. 2008. Quantifying counts and costs via classification. Data Mining and Knowledge Discovery 17, 2 (2008), 164--206.S. García and F. Herrera. 2008. An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. The Journal of Machine Learning Research 9, 2677--2694 (2008), 66.R. Ghani. 2005. Price prediction and insurance for online auctions. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (KDD’05). ACM, New York, NY, 411--418.C. W. J. Granger. 1969. Prediction with a generalized cost of error function. Operational Research (1969), 199--207.C. W. J. Granger. 1999. Outline of forecast theory using generalized cost functions. Spanish Economic Review 1, 2 (1999), 161--173.P. Hall, J. Racine, and Q. Li. 2004. Cross-validation and the estimation of conditional probability densities. Journal of the American Statistical Association 99, 468 (2004), 1015--1026.P. Hall, R. C. L. Wolff, and Q. Yao. 1999. Methods for estimating a conditional distribution function. Journal of the American Statistical Association (1999), 154--163.T. J. Hastie, R. J. Tibshirani, and J. H. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.J. Hernández-Orallo. 2013. ROC curves for regression. Pattern Recognition 46, 12 (2013), 3395--3411.J. Hernández-Orallo, P. Flach, and C. Ferri. 2012. A unified view of performance metrics: Translating threshold choice into expected classification loss. Journal of Machine Learning Research 13 (2012), 2813--2869.J. Hernández-Orallo, P. Flach, and C. Ferri. 2013. ROC curves in cost space. Machine Learning 93, 1 (2013), 71--91.J. N. Hwang, S. R. Lay, and A. Lippman. 1994. Nonparametric multivariate density estimation: A comparative study. IEEE Transactions on Signal Processing 42, 10 (1994), 2795--2810.R. J. Hyndman, D. M. Bashtannyk, and G. K. Grunwald. 1996. Estimating and visualizing conditional densities. Journal of Computational and Graphical Statistics (1996), 315--336.N. Japkowicz and M. Shah. 2011. Evaluating Learning Algorithms: A Classification Perspective. Cambridge University Press.M. Jino, B. T. de Abreu, and others. 2010. Machine learning methods and asymmetric cost function to estimate execution effort of software testing. In Proceedings of the 2010 3rd International Conference on Software Testing, Verification and Validation (ICST’10). IEEE, 275--284.B. Kitts and B. Leblanc. 2004. Optimal bidding on keyword auctions. Electronic Markets 14, 3 (2004), 186--201.N. Lachiche and P. Flach. 2003. Improving accuracy and cost of two-class and multi-class probabilistic classifiers using ROC curves. In Proceedings of the International Conference on Machine Learning, Vol. 20-1. 416.H. Papadopoulos. 2008. Inductive conformal prediction: Theory and application to neural networks. Tools in Artificial Intelligence 18 (2008), 315--330.H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. 2002. Inductive confidence machines for regression. In Machine Learning: ECML 2002, Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (Eds.). Lecture Notes in Computer Science, Vol. 2430. Springer, Berlin, 185--194.H. Papadopoulos, V. Vovk, and A. Gammerman. 2011. Regression conformal prediction with nearest neighbours. Journal of Artificial Intelligence Research 40, 1 (2011), 815--840.T. Pietraszek. 2007. On the use of ROC analysis for the optimization of abstaining classifiers. Machine Learning 68, 2 (2007), 137--169.J. C. Platt. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, Boston, 61--74.F. Provost and P. Domingos. 2003. Tree induction for probability-based ranking. Machine Learning 52, 3 (2003), 199--215.R Team and others. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.R. Ribeiro. 2011. Utility-based Regression. PhD thesis, Department of Computer Science, Faculty of Sciences, University of Porto.M. Rosenblatt. 1969. Conditional probability density and regression estimators. Multivariate Analysis II 25 (1969), 31.S. Rosset, C. Perlich, and B. Zadrozny. 2007. Ranking-based evaluation of regression models. Knowledge and Information Systems 12, 3 (2007), 331--353.R. E. Schapire, P. Stone, D. McAllester, M. L. Littman, and J. A. Csirik. 2002. Modeling auction price uncertainty using boosting-based conditional density estimation. In Proceedings of the International Conference on Machine Learning. 546--553.G. Shafer and V. Vovk. 2008. A tutorial on conformal prediction. Journal of Machine Learning Research 9 (2008), 371--421.J. A. Swets, R. M. Dawes, and J. Monahan. 2000. Better decisions through science. Scientific American 283, 4 (Oct. 2000), 82--87.R. D. Thompson and A. P. Basu. 1996. Asymmetric loss functions for estimating system reliability. In Bayesian Analysis in Statistics and Econometrics. John Wiley & Sons, 471--482.L. Torgo. 2005. Regression error characteristic surfaces. In Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. ACM, 697--702.L. Torgo. 2010. Data Mining with R. Chapman and Hall/CRC Press.L. Torgo and R. Ribeiro. 2007. Utility-based regression. Knowledge Discovery in Databases: PKDD 2007. 597--604.L. Torgo and R. Ribeiro. 2009. Precision and recall for regression. In Discovery Science. Springer, 332--346.P. Turney. 2000. Types of cost in inductive concept learning. Canada National Research Council Publications Archive.L. Wasserman. 2006. All of Nonparametric Statistics. Springer-Verlag, New York.M. P. Wellman, D. M. Reeves, K. M. Lochner, and Y. Vorobeychik. 2004. Price prediction in a trading agent competition. Journal of Artificial Intelligence Research 21 (2004), 19--36.K. Yu and M. C. Jones. 2004. Likelihood-based local linear estimation of the conditional variance function. Journal of the American Statistical Association 99, 465 (2004), 139--144.B. Zadrozny and C. Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 694--699.A. Zellner. 1986. Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association (1986), 446--451.H. Zhao, A. P. Sinha, and G. Bansal. 2011. An extended tuning method for cost-sensitive regression and forecasting. Decision Support Systems

    ROC curves in cost space

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10994-013-5328-9ROC curves and cost curves are two popular ways of visualising classifier performance, finding appropriate thresholds according to the operating condition, and deriving useful aggregated measures such as the area under the ROC curve (AUC) or the area under the optimal cost curve. In this paper we present new findings and connections between ROC space and cost space. In particular, we show that ROC curves can be transferred to cost space by means of a very natural threshold choice method, which sets the decision threshold such that the proportion of positive predictions equals the operating condition. We call these new curves rate-driven curves, and we demonstrate that the expected loss as measured by the area under these curves is linearly related to AUC. We show that the rate-driven curves are the genuine equivalent of ROC curves in cost space, establishing a point-point rather than a point-line correspondence. Furthermore, a decomposition of the rate-driven curves is introduced which separates the loss due to the threshold choice method from the ranking loss (Kendall τ distance). We also derive the corresponding curve to the ROC convex hull in cost space; this curve is different from the lower envelope of the cost lines, as the latter assumes only optimal thresholds are chosen.We would like to thank the anonymous referees for their helpful comments. This work was supported by the MEC/MINECO projects CONSOLIDER-INGENIO CSD2007-00022 and TIN 2010-21062-C02-02, GVA project PROMETEO/2008/051, the COST-European Cooperation in the field of Scientific and Technical Research IC0801 AT, and the REFRAME project granted by the European Coordinated Research on Long-term Challenges in Information and Communication Sciences & Technologies ERA-Net (CHIST-ERA), and funded by the Engineering and Physical Sciences Research Council in the UK and the Ministerio de Economia y Competitividad in Spain.Hernández Orallo, J.; Flach ., P.; Ferri Ramírez, C. (2013). ROC curves in cost space. Machine Learning. 93(1):71-91. https://doi.org/10.1007/s10994-013-5328-9S7191931Adams, N., & Hand, D. (1999). Comparing classifiers when the misallocation costs are uncertain. Pattern Recognition, 32(7), 1139–1147.Chang, J., & Yap, C. (1986). A polynomial solution for the potato-peeling problem. Discrete & Computational Geometry, 1(1), 155–182.Drummond, C., & Holte, R. (2000). Explicitly representing expected cost: an alternative to ROC representation. In Knowl. discovery & data mining (pp. 198–207).Drummond, C., & Holte, R. (2006). Cost curves: an improved method for visualizing classifier performance. Machine Learning, 65, 95–130.Elkan, C. (2001). The foundations of cost-sensitive learning. In B. Nebel (Ed.), Proc. of the 17th intl. conf. on artificial intelligence (IJCAI-01) (pp. 973–978).Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.Fawcett, T., & Niculescu-Mizil, A. (2007). PAV and the ROC convex hull. Machine Learning, 68(1), 97–106.Flach, P. (2003). The geometry of ROC space: understanding machine learning metrics through ROC isometrics. In Machine learning, proceedings of the twentieth international conference (ICML 2003) (pp. 194–201).Flach, P., Hernández-Orallo, J., & Ferri, C. (2011). A coherent interpretation of AUC as a measure of aggregated classification performance. In Proc. of the 28th intl. conference on machine learning, ICML2011.Frank, A., & Asuncion, A. (2010). UCI machine learning repository. http://archive.ics.uci.edu/ml .Hand, D. (2009). Measuring classifier performance: a coherent alternative to the area under the ROC curve. Machine Learning, 77(1), 103–123.Hernández-Orallo, J., Flach, P., & Ferri, C. (2011). Brier curves: a new cost-based visualisation of classifier performance. In Proceedings of the 28th international conference on machine learning, ICML2011.Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A unified view of performance metrics: translating threshold choice into expected classification loss. Journal of Machine Learning Research, 13, 2813–2869.Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1/2), 81–93. doi: 10.2307/2332226 .Swets, J., Dawes, R., & Monahan, J. (2000). Better decisions through science. Scientific American, 283(4), 82–87

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    • …
    corecore