32,547 research outputs found

    Securing Connected & Autonomous Vehicles: Challenges Posed by Adversarial Machine Learning and The Way Forward

    Full text link
    Connected and autonomous vehicles (CAVs) will form the backbone of future next-generation intelligent transportation systems (ITS) providing travel comfort, road safety, along with a number of value-added services. Such a transformation---which will be fuelled by concomitant advances in technologies for machine learning (ML) and wireless communications---will enable a future vehicular ecosystem that is better featured and more efficient. However, there are lurking security problems related to the use of ML in such a critical setting where an incorrect ML decision may not only be a nuisance but can lead to loss of precious lives. In this paper, we present an in-depth overview of the various challenges associated with the application of ML in vehicular networks. In addition, we formulate the ML pipeline of CAVs and present various potential security issues associated with the adoption of ML methods. In particular, we focus on the perspective of adversarial ML attacks on CAVs and outline a solution to defend against adversarial attacks in multiple settings

    A Methodological Review of Visual Road Recognition Procedures for Autonomous Driving Applications

    Full text link
    The current research interest in autonomous driving is growing at a rapid pace, attracting great investments from both the academic and corporate sectors. In order for vehicles to be fully autonomous, it is imperative that the driver assistance system is adapt in road and lane keeping. In this paper, we present a methodological review of techniques with a focus on visual road detection and recognition. We adopt a pragmatic outlook in presenting this review, whereby the procedures of road recognition is emphasised with respect to its practical implementations. The contribution of this review hence covers the topic in two parts -- the first part describes the methodological approach to conventional road detection, which covers the algorithms and approaches involved to classify and segregate roads from non-road regions; and the other part focuses on recent state-of-the-art machine learning techniques that are applied to visual road recognition, with an emphasis on methods that incorporate convolutional neural networks and semantic segmentation. A subsequent overview of recent implementations in the commercial sector is also presented, along with some recent research works pertaining to road detections.Comment: 14 pages, 6 Figures, 2 Tables. Permission to reprint granted from original figure author

    A Survey of Deep Learning Techniques for Mobile Robot Applications

    Full text link
    Advancements in deep learning over the years have attracted research into how deep artificial neural networks can be used in robotic systems. This research survey will present a summarization of the current research with a specific focus on the gains and obstacles for deep learning to be applied to mobile robotics

    No Blind Spots: Full-Surround Multi-Object Tracking for Autonomous Vehicles using Cameras & LiDARs

    Full text link
    Online multi-object tracking (MOT) is extremely important for high-level spatial reasoning and path planning for autonomous and highly-automated vehicles. In this paper, we present a modular framework for tracking multiple objects (vehicles), capable of accepting object proposals from different sensor modalities (vision and range) and a variable number of sensors, to produce continuous object tracks. This work is a generalization of the MDP framework for MOT, with some key extensions - First, we track objects across multiple cameras and across different sensor modalities. This is done by fusing object proposals across sensors accurately and efficiently. Second, the objects of interest (targets) are tracked directly in the real world. This is a departure from traditional techniques where objects are simply tracked in the image plane. Doing so allows the tracks to be readily used by an autonomous agent for navigation and related tasks. To verify the effectiveness of our approach, we test it on real world highway data collected from a heavily sensorized testbed capable of capturing full-surround information. We demonstrate that our framework is well-suited to track objects through entire maneuvers around the ego-vehicle, some of which take more than a few minutes to complete. We also leverage the modularity of our approach by comparing the effects of including/excluding different sensors, changing the total number of sensors, and the quality of object proposals on the final tracking result

    Is it Safe to Drive? An Overview of Factors, Challenges, and Datasets for Driveability Assessment in Autonomous Driving

    Full text link
    With recent advances in learning algorithms and hardware development, autonomous cars have shown promise when operating in structured environments under good driving conditions. However, for complex, cluttered and unseen environments with high uncertainty, autonomous driving systems still frequently demonstrate erroneous or unexpected behaviors, that could lead to catastrophic outcomes. Autonomous vehicles should ideally adapt to driving conditions; while this can be achieved through multiple routes, it would be beneficial as a first step to be able to characterize Driveability in some quantified form. To this end, this paper aims to create a framework for investigating different factors that can impact driveability. Also, one of the main mechanisms to adapt autonomous driving systems to any driving condition is to be able to learn and generalize from representative scenarios. The machine learning algorithms that currently do so learn predominantly in a supervised manner and consequently need sufficient data for robust and efficient learning. Therefore, we also perform a comparative overview of 45 public driving datasets that enable learning and publish this dataset index at https://sites.google.com/view/driveability-survey-datasets. Specifically, we categorize the datasets according to use cases, and highlight the datasets that capture complicated and hazardous driving conditions which can be better used for training robust driving models. Furthermore, by discussions of what driving scenarios are not covered by existing public datasets and what driveability factors need more investigation and data acquisition, this paper aims to encourage both targeted dataset collection and the proposal of novel driveability metrics that enhance the robustness of autonomous cars in adverse environments

    Road Detection through Supervised Classification

    Full text link
    Autonomous driving is a rapidly evolving technology. Autonomous vehicles are capable of sensing their environment and navigating without human input through sensory information such as radar, lidar, GNSS, vehicle odometry, and computer vision. This sensory input provides a rich dataset that can be used in combination with machine learning models to tackle multiple problems in supervised settings. In this paper we focus on road detection through gray-scale images as the sole sensory input. Our contributions are twofold: first, we introduce an annotated dataset of urban roads for machine learning tasks; second, we introduce a road detection framework on this dataset through supervised classification and hand-crafted feature vectors

    Vulnerable road user detection: state-of-the-art and open challenges

    Full text link
    Correctly identifying vulnerable road users (VRUs), e.g. cyclists and pedestrians, remains one of the most challenging environment perception tasks for autonomous vehicles (AVs). This work surveys the current state-of-the-art in VRU detection, covering topics such as benchmarks and datasets, object detection techniques and relevant machine learning algorithms. The article concludes with a discussion of remaining open challenges and promising future research directions for this domain

    Joint Attention in Driver-Pedestrian Interaction: from Theory to Practice

    Full text link
    Today, one of the major challenges that autonomous vehicles are facing is the ability to drive in urban environments. Such a task requires communication between autonomous vehicles and other road users in order to resolve various traffic ambiguities. The interaction between road users is a form of negotiation in which the parties involved have to share their attention regarding a common objective or a goal (e.g. crossing an intersection), and coordinate their actions in order to accomplish it. In this literature review we aim to address the interaction problem between pedestrians and drivers (or vehicles) from joint attention point of view. More specifically, we will discuss the theoretical background behind joint attention, its application to traffic interaction and practical approaches to implementing joint attention for autonomous vehicles

    Machine Vision in the Context of Robotics: A Systematic Literature Review

    Full text link
    Machine vision is critical to robotics due to a wide range of applications which rely on input from visual sensors such as autonomous mobile robots and smart production systems. To create the smart homes and systems of tomorrow, an overview about current challenges in the research field would be of use to identify further possible directions, created in a systematic and reproducible manner. In this work a systematic literature review was conducted covering research from the last 10 years. We screened 172 papers from four databases and selected 52 relevant papers. While robustness and computation time were improved greatly, occlusion and lighting variance are still the biggest problems faced. From the number of recent publications, we conclude that the observed field is of relevance and interest to the research community. Further challenges arise in many areas of the field.Comment: 10 pages 5 figures, systematic literature stud

    Towards Pedestrian Detection Using RetinaNet in ECCV 2018 Wider Pedestrian Detection Challenge

    Full text link
    The main essence of this paper is to investigate the performance of RetinaNet based object detectors on pedestrian detection. Pedestrian detection is an important research topic as it provides a baseline for general object detection and has a great number of practical applications like autonomous car, robotics and Security camera. Though extensive research has made huge progress in pedestrian detection, there are still many issues and open for more research and improvement. Recent deep learning based methods have shown state-of-the-art performance in computer vision tasks such as image classification, object detection, and segmentation. Wider pedestrian detection challenge aims at finding improve solutions for pedestrian detection problem. In this paper, We propose a pedestrian detection system based on RetinaNet. Our solution has scored 0.4061 mAP. The code is available at https://github.com/miltonbd/ECCV_2018_pedestrian_detection_challenege.Comment: ECCV Wider pedestrian detection challenege submissio
    • …
    corecore