989 research outputs found

    A lower bound on the positive semidefinite rank of convex bodies

    Get PDF
    The positive semidefinite rank of a convex body CC is the size of its smallest positive semidefinite formulation. We show that the positive semidefinite rank of any convex body CC is at least logd\sqrt{\log d} where dd is the smallest degree of a polynomial that vanishes on the boundary of the polar of CC. This improves on the existing bound which relies on results from quantifier elimination. The proof relies on the B\'ezout bound applied to the Karush-Kuhn-Tucker conditions of optimality. We discuss the connection with the algebraic degree of semidefinite programming and show that the bound is tight (up to constant factor) for random spectrahedra of suitable dimension

    Lifts of convex sets and cone factorizations

    Get PDF
    In this paper we address the basic geometric question of when a given convex set is the image under a linear map of an affine slice of a given closed convex cone. Such a representation or 'lift' of the convex set is especially useful if the cone admits an efficient algorithm for linear optimization over its affine slices. We show that the existence of a lift of a convex set to a cone is equivalent to the existence of a factorization of an operator associated to the set and its polar via elements in the cone and its dual. This generalizes a theorem of Yannakakis that established a connection between polyhedral lifts of a polytope and nonnegative factorizations of its slack matrix. Symmetric lifts of convex sets can also be characterized similarly. When the cones live in a family, our results lead to the definition of the rank of a convex set with respect to this family. We present results about this rank in the context of cones of positive semidefinite matrices. Our methods provide new tools for understanding cone lifts of convex sets.Comment: 20 pages, 2 figure

    Dualities in Convex Algebraic Geometry

    Full text link
    Convex algebraic geometry concerns the interplay between optimization theory and real algebraic geometry. Its objects of study include convex semialgebraic sets that arise in semidefinite programming and from sums of squares. This article compares three notions of duality that are relevant in these contexts: duality of convex bodies, duality of projective varieties, and the Karush-Kuhn-Tucker conditions derived from Lagrange duality. We show that the optimal value of a polynomial program is an algebraic function whose minimal polynomial is expressed by the hypersurface projectively dual to the constraint set. We give an exposition of recent results on the boundary structure of the convex hull of a compact variety, we contrast this to Lasserre's representation as a spectrahedral shadow, and we explore the geometric underpinnings of semidefinite programming duality.Comment: 48 pages, 11 figure

    On polyhedral approximations of the positive semidefinite cone

    Full text link
    Let DD be the set of n×nn\times n positive semidefinite matrices of trace equal to one, also known as the set of density matrices. We prove two results on the hardness of approximating DD with polytopes. First, we show that if 0<ϵ<10 < \epsilon < 1 and AA is an arbitrary matrix of trace equal to one, any polytope PP such that (1ϵ)(DA)PDA(1-\epsilon)(D-A) \subset P \subset D-A must have linear programming extension complexity at least exp(cn)\exp(c\sqrt{n}) where c>0c > 0 is a constant that depends on ϵ\epsilon. Second, we show that any polytope PP such that DPD \subset P and such that the Gaussian width of PP is at most twice the Gaussian width of DD must have extension complexity at least exp(cn1/3)\exp(cn^{1/3}). The main ingredient of our proofs is hypercontractivity of the noise operator on the hypercube.Comment: 12 page

    Theta Bodies for Polynomial Ideals

    Full text link
    Inspired by a question of Lov\'asz, we introduce a hierarchy of nested semidefinite relaxations of the convex hull of real solutions to an arbitrary polynomial ideal, called theta bodies of the ideal. For the stable set problem in a graph, the first theta body in this hierarchy is exactly Lov\'asz's theta body of the graph. We prove that theta bodies are, up to closure, a version of Lasserre's relaxations for real solutions to ideals, and that they can be computed explicitly using combinatorial moment matrices. Theta bodies provide a new canonical set of semidefinite relaxations for the max cut problem. For vanishing ideals of finite point sets, we give several equivalent characterizations of when the first theta body equals the convex hull of the points. We also determine the structure of the first theta body for all ideals.Comment: 26 pages, 3 figure

    On the existence of 0/1 polytopes with high semidefinite extension complexity

    Full text link
    In Rothvo\ss{} it was shown that there exists a 0/1 polytope (a polytope whose vertices are in \{0,1\}^{n}) such that any higher-dimensional polytope projecting to it must have 2^{\Omega(n)} facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high PSD extension complexity was left open. We answer this question in the affirmative by showing that there is a 0/1 polytope such that any spectrahedron projecting to it must be the intersection of a semidefinite cone of dimension~2^{\Omega(n)} and an affine space. Our proof relies on a new technique to rescale semidefinite factorizations

    Semidefinite descriptions of the convex hull of rotation matrices

    Full text link
    We study the convex hull of SO(n)SO(n), thought of as the set of n×nn\times n orthogonal matrices with unit determinant, from the point of view of semidefinite programming. We show that the convex hull of SO(n)SO(n) is doubly spectrahedral, i.e. both it and its polar have a description as the intersection of a cone of positive semidefinite matrices with an affine subspace. Our spectrahedral representations are explicit, and are of minimum size, in the sense that there are no smaller spectrahedral representations of these convex bodies.Comment: 29 pages, 1 figur

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory
    corecore