2,223 research outputs found

    Planar Induced Subgraphs of Sparse Graphs

    Full text link
    We show that every graph has an induced pseudoforest of at least n−m/4.5n-m/4.5 vertices, an induced partial 2-tree of at least n−m/5n-m/5 vertices, and an induced planar subgraph of at least n−m/5.2174n-m/5.2174 vertices. These results are constructive, implying linear-time algorithms to find the respective induced subgraphs. We also show that the size of the largest KhK_h-minor-free graph in a given graph can sometimes be at most n−m/6+o(m)n-m/6+o(m).Comment: Accepted by Graph Drawing 2014. To appear in Journal of Graph Algorithms and Application

    Size of the Largest Induced Forest in Subcubic Graphs of Girth at least Four and Five

    Full text link
    In this paper, we address the maximum number of vertices of induced forests in subcubic graphs with girth at least four or five. We provide a unified approach to prove that every 2-connected subcubic graph on nn vertices and mm edges with girth at least four or five, respectively, has an induced forest on at least n−29mn-\frac{2}{9}m or n−15mn-\frac{1}{5}m vertices, respectively, except for finitely many exceptional graphs. Our results improve a result of Liu and Zhao and are tight in the sense that the bounds are attained by infinitely many 2-connected graphs. Equivalently, we prove that such graphs admit feedback vertex sets with size at most 29m\frac{2}{9}m or 15m\frac{1}{5}m, respectively. Those exceptional graphs will be explicitly constructed, and our result can be easily modified to drop the 2-connectivity requirement

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675
    • …
    corecore