3,277 research outputs found

    A better upper bound on the number of triangulations of a planar point set

    Full text link
    We show that a point set of cardinality nn in the plane cannot be the vertex set of more than 59nO(n6)59^n O(n^{-6}) straight-edge triangulations of its convex hull. This improves the previous upper bound of 276.75n276.75^n.Comment: 6 pages, 1 figur

    On the Number of Pseudo-Triangulations of Certain Point Sets

    Get PDF
    We pose a monotonicity conjecture on the number of pseudo-triangulations of any planar point set, and check it on two prominent families of point sets, namely the so-called double circle and double chain. The latter has asymptotically 12nnΘ(1)12^n n^{\Theta(1)} pointed pseudo-triangulations, which lies significantly above the maximum number of triangulations in a planar point set known so far.Comment: 31 pages, 11 figures, 4 tables. Not much technical changes with respect to v1, except some proofs and statements are slightly more precise and some expositions more clear. This version has been accepted in J. Combin. Th. A. The increase in number of pages from v1 is mostly due to formatting the paper with "elsart.cls" for Elsevie

    A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

    Full text link
    The number of triangulations of a planar n point set is known to be cnc^n, where the base cc lies between 2.432.43 and 30.30. The fastest known algorithm for counting triangulations of a planar n point set runs in O(2n)O^*(2^n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n.n. We present the first quasi-polynomial approximation scheme for the base of the number of triangulations of a planar point set

    Transforming triangulations on non planar-surfaces

    Get PDF
    We consider whether any two triangulations of a polygon or a point set on a non-planar surface with a given metric can be transformed into each other by a sequence of edge flips. The answer is negative in general with some remarkable exceptions, such as polygons on the cylinder, and on the flat torus, and certain configurations of points on the cylinder.Comment: 19 pages, 17 figures. This version has been accepted in the SIAM Journal on Discrete Mathematics. Keywords: Graph of triangulations, triangulations on surfaces, triangulations of polygons, edge fli

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm
    corecore