256 research outputs found

    A lower bound for the determinantal complexity of a hypersurface

    Full text link
    We prove that the determinantal complexity of a hypersurface of degree d>2d > 2 is bounded below by one more than the codimension of the singular locus, provided that this codimension is at least 55. As a result, we obtain that the determinantal complexity of the 3×33 \times 3 permanent is 77. We also prove that for n>3n> 3, there is no nonsingular hypersurface in Pn\mathbf{P}^n of degree dd that has an expression as a determinant of a d×dd \times d matrix of linear forms while on the other hand for n3n \le 3, a general determinantal expression is nonsingular. Finally, we answer a question of Ressayre by showing that the determinantal complexity of the unique (singular) cubic surface containing a single line is 55.Comment: 7 pages, 0 figure

    Polar Varieties and Efficient Real Elimination

    Full text link
    Let S0S_0 be a smooth and compact real variety given by a reduced regular sequence of polynomials f1,...,fpf_1, ..., f_p. This paper is devoted to the algorithmic problem of finding {\em efficiently} a representative point for each connected component of S0S_0 . For this purpose we exhibit explicit polynomial equations that describe the generic polar varieties of S0S_0. This leads to a procedure which solves our algorithmic problem in time that is polynomial in the (extrinsic) description length of the input equations f1,>...,fpf_1, >..., f_p and in a suitably introduced, intrinsic geometric parameter, called the {\em degree} of the real interpretation of the given equation system f1,>...,fpf_1, >..., f_p.Comment: 32 page

    Using Elimination Theory to construct Rigid Matrices

    Get PDF
    The rigidity of a matrix A for target rank r is the minimum number of entries of A that must be changed to ensure that the rank of the altered matrix is at most r. Since its introduction by Valiant (1977), rigidity and similar rank-robustness functions of matrices have found numerous applications in circuit complexity, communication complexity, and learning complexity. Almost all nxn matrices over an infinite field have a rigidity of (n-r)^2. It is a long-standing open question to construct infinite families of explicit matrices even with superlinear rigidity when r = Omega(n). In this paper, we construct an infinite family of complex matrices with the largest possible, i.e., (n-r)^2, rigidity. The entries of an n x n matrix in this family are distinct primitive roots of unity of orders roughly exp(n^2 log n). To the best of our knowledge, this is the first family of concrete (but not entirely explicit) matrices having maximal rigidity and a succinct algebraic description. Our construction is based on elimination theory of polynomial ideals. In particular, we use results on the existence of polynomials in elimination ideals with effective degree upper bounds (effective Nullstellensatz). Using elementary algebraic geometry, we prove that the dimension of the affine variety of matrices of rigidity at most k is exactly n^2-(n-r)^2+k. Finally, we use elimination theory to examine whether the rigidity function is semi-continuous.Comment: 25 Pages, minor typos correcte

    Semidefinite Representation of the kk-Ellipse

    Full text link
    The kk-ellipse is the plane algebraic curve consisting of all points whose sum of distances from kk given points is a fixed number. The polynomial equation defining the kk-ellipse has degree 2k2^k if kk is odd and degree 2k(kk/2)2^k{-}\binom{k}{k/2} if kk is even. We express this polynomial equation as the determinant of a symmetric matrix of linear polynomials. Our representation extends to weighted kk-ellipses and kk-ellipsoids in arbitrary dimensions, and it leads to new geometric applications of semidefinite programming.Comment: 16 pages, 5 figure

    Maximum Likelihood for Matrices with Rank Constraints

    Full text link
    Maximum likelihood estimation is a fundamental optimization problem in statistics. We study this problem on manifolds of matrices with bounded rank. These represent mixtures of distributions of two independent discrete random variables. We determine the maximum likelihood degree for a range of determinantal varieties, and we apply numerical algebraic geometry to compute all critical points of their likelihood functions. This led to the discovery of maximum likelihood duality between matrices of complementary ranks, a result proved subsequently by Draisma and Rodriguez.Comment: 22 pages, 1 figur

    Maximum likelihood geometry in the presence of data zeros

    Full text link
    Given a statistical model, the maximum likelihood degree is the number of complex solutions to the likelihood equations for generic data. We consider discrete algebraic statistical models and study the solutions to the likelihood equations when the data contain zeros and are no longer generic. Focusing on sampling and model zeros, we show that, in these cases, the solutions to the likelihood equations are contained in a previously studied variety, the likelihood correspondence. The number of these solutions give a lower bound on the ML degree, and the problem of finding critical points to the likelihood function can be partitioned into smaller and computationally easier problems involving sampling and model zeros. We use this technique to compute a lower bound on the ML degree for 2×2×2×22 \times 2 \times 2 \times 2 tensors of border rank 2\leq 2 and 3×n3 \times n tables of rank 2\leq 2 for n=11,12,13,14n=11, 12, 13, 14, the first four values of nn for which the ML degree was previously unknown

    A primal-dual formulation for certifiable computations in Schubert calculus

    Full text link
    Formulating a Schubert problem as the solutions to a system of equations in either Pl\"ucker space or in the local coordinates of a Schubert cell typically involves more equations than variables. We present a novel primal-dual formulation of any Schubert problem on a Grassmannian or flag manifold as a system of bilinear equations with the same number of equations as variables. This formulation enables numerical computations in the Schubert calculus to be certified using algorithms based on Smale's \alpha-theory.Comment: 21 page
    corecore