301 research outputs found

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Compound codes based on irregular graphs and their iterative decoding.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2004.Low-density parity-check (LDPC) codes form a Shannon limit approaching class of linear block codes. With iterative decoding based on their Tanner graphs, they can achieve outstanding performance. Since their rediscovery in late 1990's, the design, construction, and decoding of LDPC codes as well as their generalization have become one of the focal research points. This thesis takes a few more steps in these directions. The first significant contribution of this thesis is the introduction of a new class of codes called Generalized Irregular Low-Density (GILD) parity-check codes, which are adapted from the previously known class of Generalized Low-Density (GLD) codes. GILD codes are generalization of irregular LDPC codes, and are shown to outperform GLD codes. In addition, GILD codes have a significant advantage over GLD codes in terms of encoding and decoding complexity. They are also able to match and even beat LDPC codes for small block lengths. The second significant contribution of this thesis is the proposition of several decoding algorithms. Two new decoding algolithms for LDPC codes are introduced. In principle and complexity these algorithms can be grouped with bit flipping algorithms. Two soft-input soft-output (SISO) decoding algorithms for linear block codes are also proposed. The first algorithm is based on Maximum a Posteriori Probability (MAP) decoding of low-weight subtrellis centered around a generated candidate codeword. The second algorithm modifies and utilizes the improved Kaneko's decoding algorithm for soft-input hard-output decoding. These hard outputs are converted to soft-decisions using reliability calculations. Simulation results indicate that the proposed algorithms provide a significant improvement in error performance over Chase-based algorithm and achieve practically optimal performance with a significant reduction in decoding complexity. An analytical expression for the union bound on the bit error probability of linear codes on the Gilbert-Elliott (GE) channel model is also derived. This analytical result is shown to be accurate in establishing the decoder performance in the range where obtaining sufficient data from simulation is impractical

    The Road From Classical to Quantum Codes: A Hashing Bound Approaching Design Procedure

    Full text link
    Powerful Quantum Error Correction Codes (QECCs) are required for stabilizing and protecting fragile qubits against the undesirable effects of quantum decoherence. Similar to classical codes, hashing bound approaching QECCs may be designed by exploiting a concatenated code structure, which invokes iterative decoding. Therefore, in this paper we provide an extensive step-by-step tutorial for designing EXtrinsic Information Transfer (EXIT) chart aided concatenated quantum codes based on the underlying quantum-to-classical isomorphism. These design lessons are then exemplified in the context of our proposed Quantum Irregular Convolutional Code (QIRCC), which constitutes the outer component of a concatenated quantum code. The proposed QIRCC can be dynamically adapted to match any given inner code using EXIT charts, hence achieving a performance close to the hashing bound. It is demonstrated that our QIRCC-based optimized design is capable of operating within 0.4 dB of the noise limit

    Bit-Interleaved Coded Modulation

    Get PDF

    Codes on Graphs and More

    Get PDF
    Modern communication systems strive to achieve reliable and efficient information transmission and storage with affordable complexity. Hence, efficient low-complexity channel codes providing low probabilities for erroneous receptions are needed. Interpreting codes as graphs and graphs as codes opens new perspectives for constructing such channel codes. Low-density parity-check (LDPC) codes are one of the most recent examples of codes defined on graphs, providing a better bit error probability than other block codes, given the same decoding complexity. After an introduction to coding theory, different graphical representations for channel codes are reviewed. Based on ideas from graph theory, new algorithms are introduced to iteratively search for LDPC block codes with large girth and to determine their minimum distance. In particular, new LDPC block codes of different rates and with girth up to 24 are presented. Woven convolutional codes are introduced as a generalization of graph-based codes and an asymptotic bound on their free distance, namely, the Costello lower bound, is proven. Moreover, promising examples of woven convolutional codes are given, including a rate 5/20 code with overall constraint length 67 and free distance 120. The remaining part of this dissertation focuses on basic properties of convolutional codes. First, a recurrent equation to determine a closed form expression of the exact decoding bit error probability for convolutional codes is presented. The obtained closed form expression is evaluated for various realizations of encoders, including rate 1/2 and 2/3 encoders, of as many as 16 states. Moreover, MacWilliams-type identities are revisited and a recursion for sequences of spectra of truncated as well as tailbitten convolutional codes and their duals is derived. Finally, the dissertation is concluded with exhaustive searches for convolutional codes of various rates with either optimum free distance or optimum distance profile, extending previously published results

    Capacity -based parameter optimization of bandwidth constrained CPM

    Get PDF
    Continuous phase modulation (CPM) is an attractive modulation choice for bandwidth limited systems due to its small side lobes, fast spectral decay and the ability to be noncoherently detected. Furthermore, the constant envelope property of CPM permits highly power efficient amplification. The design of bit-interleaved coded continuous phase modulation is characterized by the code rate, modulation order, modulation index, and pulse shape. This dissertation outlines a methodology for determining the optimal values of these parameters under bandwidth and receiver complexity constraints. The cost function used to drive the optimization is the information-theoretic minimum ratio of energy-per-bit to noise-spectral density found by evaluating the constrained channel capacity. The capacity can be reliably estimated using Monte Carlo integration. A search for optimal parameters is conducted over a range of coded CPM parameters, bandwidth efficiencies, and channels. Results are presented for a system employing a trellis-based coherent detector. To constrain complexity and allow any modulation index to be considered, a soft output differential phase detector has also been developed.;Building upon the capacity results, extrinsic information transfer (EXIT) charts are used to analyze a system that iterates between demodulation and decoding. Convergence thresholds are determined for the iterative system for different outer convolutional codes, alphabet sizes, modulation indices and constellation mappings. These are used to identify the code and modulation parameters with the best energy efficiency at different spectral efficiencies for the AWGN channel. Finally, bit error rate curves are presented to corroborate the capacity and EXIT chart designs

    Error-correction on non-standard communication channels

    Get PDF
    Many communication systems are poorly modelled by the standard channels assumed in the information theory literature, such as the binary symmetric channel or the additive white Gaussian noise channel. Real systems suffer from additional problems including time-varying noise, cross-talk, synchronization errors and latency constraints. In this thesis, low-density parity-check codes and codes related to them are applied to non-standard channels. First, we look at time-varying noise modelled by a Markov channel. A low-density parity-check code decoder is modified to give an improvement of over 1dB. Secondly, novel codes based on low-density parity-check codes are introduced which produce transmissions with Pr(bit = 1) ≠ Pr(bit = 0). These non-linear codes are shown to be good candidates for multi-user channels with crosstalk, such as optical channels. Thirdly, a channel with synchronization errors is modelled by random uncorrelated insertion or deletion events at unknown positions. Marker codes formed from low-density parity-check codewords with regular markers inserted within them are studied. It is shown that a marker code with iterative decoding has performance close to the bounds on the channel capacity, significantly outperforming other known codes. Finally, coding for a system with latency constraints is studied. For example, if a telemetry system involves a slow channel some error correction is often needed quickly whilst the code should be able to correct remaining errors later. A new code is formed from the intersection of a convolutional code with a high rate low-density parity-check code. The convolutional code has good early decoding performance and the high rate low-density parity-check code efficiently cleans up remaining errors after receiving the entire block. Simulations of the block code show a gain of 1.5dB over a standard NASA code
    corecore