510 research outputs found

    Adaptive antennas for mobile terminals of wireless communication links

    Get PDF
    Adaptive antennas represent a special class of antennas able to perform dynamic modification on the radiating parameter according a proper algorithm. These radiating parameters (input impedance and the radiation pattern) can be modified for different purposes. As an example, the control of the input impedance allows the selection of a particular working frequency in multi bands applications. The control of the input impedance can be used also in wearable devices. Sure enough, such devices are exposed to user movements, dealing with compression, stretching, and bending. These deformations can cause alteration in the current distributions on the topology causing a detuning in the frequency response. Another parameter that can be controlled in an adaptive antenna is the radiation pattern. Changes in the active beam can be exploited to receive or transmit signal toward a particular direction. In this context, the author studied and designed different solution of adaptive antenna syste

    Design advances of embroidered fabric antennas

    Get PDF
    Wearable technology has attracted global attention in the last decade and the market is experiencing an unprecedented growth. Wearable devices are designed to be low-profile, light-weight and integrated seamlessly into daily life. Comfort is one of the most important requirements for wearable devices. Fabric based antennas are soft, flexible and can be integrated into clothing. State of the art textile manufacturing techniques such as embroidery, combined with advanced conductive textile materials can be used to fabricate flexible fabric based on-body antennas. In this thesis, the feasibility of using computerised embroidery in the fabrication of wearable, flexible yet functional fabric based antennas have been examined. The fabric based antennas are embroidered using conductive threads. The most suitable materials for fabricating embroidered antennas have been identified. The embroidered fabric based antenna systems including transmission lines and low-profile detachable connectors have been fabricated and their RF performances have been tested. The optimal manufacturing parameters related to embroidery such as stitch direction, spacing and length have been examined. The repeatability of embroidered antennas, cost estimation, and complexity of manufacturing process have been clearly presented. The results can be used to inform and provide guidelines for the development of representative products that can be mass manufactured. A new simulation approach has been introduced to analyse the anisotropic properties of embroidered conductive threads. Simulations and measurements indicate that the performances of embroidered antennas are affected by the anisotropic surface current due to the embroidered stitches. Exploiting the current direction, a novel non-uniform meshed patch antenna has been designed. Representative results show that the non-uniform meshed structure can significantly reduce more than 75% of the usage of conductive materials for the microstrip antennas with negligible effect on the antenna performance

    Harnessing energy for wearables: a review of radio frequency energy harvesting technologies

    Get PDF
    Wireless energy harvesting enables the conversion of ambient energy into electrical power for small wireless electronic devices. This technology offers numerous advantages, including availability, ease of implementation, wireless functionality, and cost-effectiveness. Radio frequency energy harvesting (RFEH) is a specific type of wireless energy harvesting that enables wireless power transfer by utilizing RF signals. RFEH holds immense potential for extending the lifespan of wireless sensors and wearable electronics that require low-power operation. However, despite significant advancements in RFEH technology for self-sustainable wearable devices, numerous challenges persist. This literature review focuses on three key areas: materials, antenna design, and power management, to delve into the research challenges of RFEH comprehensively. By providing an up-to-date review of research findings on RFEH, this review aims to shed light on the critical challenges, potential opportunities, and existing limitations. Moreover, it emphasizes the importance of further research and development in RFEH to advance its state-of-the-art and offer a vision for future trends in this technology

    Real-world performance of sub-1 GHz and 2.4 GHz textile antennas for RF-powered body area networks

    Get PDF
    In Radio Frequency (RF)-powered networks, peak antenna gains and path-loss models are often used to predict the power that can be received by a rectenna. However, this leads to significant over-estimation of the harvested power when using rectennas in a dynamic setting. This work proposes more realistic parameters for evaluating RF-powered Body Area Networks (BANs), and utilizes them to analyze and compare the performance of an RF-powered BAN based on 915 MHz and 2.4 GHz rectennas. Two fully-textile antennas: a 915 MHz monopole and a 2.4 GHz patch, are designed and fabricated for numerical radiation pattern analysis and practical forward transmission measurements. The antennas' radiation properties are used to calculate the power delivered to a wireless-powered BAN formed of four antennas at different body positions. The mean angular gain is proposed as a more insightful metric for evaluating RFEH networks with unknown transmitter-receiver alignment. It is concluded that, when considering the mean gain, an RF-powered BAN using an omnidirectional 915 MHz antenna outperforms a 2.4 GHz BAN with higher-gain antenna, despite lack of shielding, by 15.4Ă— higher DC power. Furthermore, a transmitter located above the user can result in 1Ă— and 9Ă— higher DC power at 915 MHz and 2.4 GHz, respectively, compared to a horizontal transmitter. Finally, it is suggested that the mean and angular gain should be considered instead of the peak gain. This accounts for the antennas' angular misalignment resulting from the receiver's mobility, which can vary the received power by an order of magnitude

    Wearable antennas: design, connectivity and evaluation measurement techniques

    Get PDF
    Wearable antennas and electronics technology rapidly grows the last decades and leads to a future where smart textiles will be integrated into our garments. However the wearable technology research includes unsolved or of different approach challenges. This thesis deals with challenges regarding wearable antenna characterization and measurements, textile antennas feeding and textile transmission lines interconnecting. Regarding the wearable antenna characterization and measurements, a novel design of a liquid torso phantom and a new methodology for evaluating wearable antenna performance by using the cylindrical near field measurement technique are proposed. As for the textile antennas and transmission lines feeding and interconnecting, two novel methods are proposed

    Ultra-Wideband Phased Arrays for Small Mobile Platforms

    Get PDF
    This dissertation presents the development of a new class of Ultra-Wideband (UWB) apertures for aerial applications by introducing designs with over 50:1 bandwidth and novel differential feeding approaches. Designs that enable vertical integration for flip-chip millimeter-wave (UWB) transceivers are presented for small aerial platforms. Specifically, a new scalable tightly coupled array is introduced with differential feeding for chip integration. This new class of beam-forming arrays are fabricated and experimentally tested for validation with operation from as low as 130 MHz up to 18 GHz. A major achievement is the study of millimeter wave beamforming designs that operate from 22-80 GHz, fabricated using low-cost printed circuit board (PCB) methods. This low-cost fabrication approach and associated testing of the beamforming arrays are unique and game-changing

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Development of Textile Antennas for Energy Harvesting

    Get PDF
    The current socio-economic developments and lifestyle trends indicate an increasing consumption of technological products and processes, powered by emergent concepts, such as Internet of Things (IoT) and smart environments, where everything is connected in a single network. For this reason, wearable technology has been addressed to make the person, mainly through his clothes, able to communicate with and be part of this technological network. Wireless communication systems are made up of several electronic components, which over the years have been miniaturized and made more flexible, such as batteries, sensors, actuators, data processing units, interconnectors and antennas. Turning these systems into wearable systems is a demanding research subject. Specifically, the development of wearable antennas has been challenging, because they are conventionally built on rigid substrates, hindering their integration into the garment. That is why, considering the flexibility and the dielectric properties of textile materials, making antennas in textile materials will allow expanding the interaction of the user with some electronic devices, by interacting through the clothes. The electronic devices may thus become less invasive and more discrete. Textile antennas combine the traditional textile materials with new technologies. They emerge as a potential interface of the human-technology-environment relationship. They are becoming an active part in the wireless communication systems, aiming applications such as tracking and navigation, mobile computing, health monitoring and others. Moreover, wearable antennas have to be thin, lightweight, of easy maintenance, robust, and of low cost for mass production and commercialization. In this way, planar antennas, the microstrip patch type, have been proposed for garment applications, because this type of antenna presents all these characteristics, and are also adaptable to any surface. Such antennas are usually formed by assembling conductive (patch and ground plane) and dielectric (substrate) layers. Furthermore, the microstrip patch antennas, radiate perpendicularly to a ground plane, which shields the antenna radiation, ensuring that the human body is exposed only to a very small fraction of the radiation. To develop this type of antenna, the knowledge of the properties of textile materials is crucial as well as the knowledge of the manufacturing techniques for connecting the layers with glue, seam, adhesive sheets and others. Several properties of the materials influence the behaviour of the antenna. For instance, the bandwidth and the efficiency of a planar antenna are mainly determined by the permittivity and the thickness of the substrate. The use of textiles in wearable antennas requires thus the characterization of their properties. Specific electrical conductive textiles are available on the market and have been successfully used. Ordinary textile fabrics have been used as substrates. In general, textiles present a very low dielectric constant, εr, that reduces the surface wave losses and increases the impedance bandwidth of the antenna. However, textile materials are constantly exchanging water molecules with the surroundings, which affects their electromagnetic properties. In addition, textile fabrics are porous, anisotropic and compressible materials whose thickness and density might change with low pressures. Therefore, it is important to know how these characteristics influence the behaviour of the antenna in order to minimize unwanted effects. To explain some influences of the textile material on the performance of the wearable antennas, this PhD Thesis starts presenting a survey of the key points for the design and development of textile antennas, from the choice of the textile materials to the framing of the antenna. An analysis of the textile materials that have been used is also presented. Further, manufacturing techniques of the textile antennas are described. The accurate characterization of textile materials to use as a dielectric substrate in wearable systems is fundamental. However, little information can be found on the electromagnetic properties of the regular textiles. Woven, knits and nonwovens are inhomogeneous, highly porous, compressible and easily influenced by the environmental hygrometric conditions, making their electromagnetic characterization difficult. Despite there are no standard methods, several authors have been adapting techniques for the dielectric characterization of textiles. This PhD Thesis focuses on the dielectric characterization of the textile materials, surveying the resonant and non-resonant methods that have been proposed to characterize the textile and leather materials. Also, this PhD Thesis summarizes the characterization of textile materials made through these methods, which were validated by testing antennas that performed well. Further a Resonant-Based Experimental Technique is presented. This new method is based on the theory of resonance-perturbation, extracting the permittivity and loss tangent values based on the shifts caused by the introduction of a superstrate on the patch of a microstrip antenna. The results obtained using this method have shown that when positioning the roughest face of the material under test (MUT) in contact with the resonator board, the extracted dielectric constant value is lower than the one extracted with this face positioned upside-down. Based on this observation, superficial properties of textiles were investigated and their influence on the performance of antennas was analysed. Thus, this PhD Thesis relates the results of the dielectric characterization to some structural parameters of textiles, such as surface roughness, superficial and bulk porosities. The results show that both roughness and superficial porosity of the samples influence the measurements, through the positioning of the probes. Further, the influence of the positioning of the dielectric material on the performance of textile microstrip antennas was analysed. For this, twelve prototypes of microstrip patch antennas were developed and tested. The results show that, despite the differences obtained on the characterization when placing the face or reverse-sides of the MUT in contact with the resonator board, the obtained average result of εr is well suited to design antennas ensuring a good performance. According to the European Commission Report in 2009, “Internet of Things — An action plan for Europe”, in the next years, the IoT will be able to improve the quality of life, especially in the health monitoring field. In the Wireless Body Sensor Network (WBSN) context, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution for a continuous wirelessly feed of the devices. Indeed, in the context of wearable devices the replacement of batteries is not easy to practice. A specific goal of this PhD Thesis is thus to describe the concept of the energy harvesting and then presents a survey of textile antennas for RF energy harvesting. Further, a dual-band printed monopole textile antenna for electromagnetic energy harvesting, operating at GSM 900 and DCS 1800 bands, is also proposed. The antenna aims to harvest energy to feed sensor nodes of a wearable health monitoring system. The gains of the antenna are around 1.8 dBi and 2.06 dBi allied with a radiation efficiency of 82% and 77.6% for the lowest and highest frequency bands, respectively. To understand and improve the performance of the proposed printed monopole textile antenna, several manufacturing techniques are tested through preliminary tests, to identify promising techniques and to discard inefficient ones, such as the gluing technique. Then, the influence of several parameters of the manufacturing techniques on the performance of the antenna are analysed, such as the use of steam during lamination, the type of adhesive sheet, the orientation of the conductive elements and others. For this, seven prototypes of the printed monopole textile antenna were manufactured by laminating and embroidering techniques. The measurement of the electrical surface resistance, Rs, has shown that the presence of the adhesive sheet used on the laminating process may reduce the conductivity of the conductive materials. Despite that, when measuring the return loss of printed monopole antennas produced by lamination, the results show the antennas have a good performance. The results also show that the orientation of the conductive fabric does not influence the performance of the antennas. However, when testing embroidered antennas, the results show that the direction and number of the stitches in the embroidery may influence the performance of the antenna and should thus be considered during manufacturing. The textile antennas perform well and their results support and give rise to the new concept of a continuous substrate to improve the integration of textile antennas into clothing, in a more comfortable and pleasure way. A demonstrating prototype, the E-Caption: Smart and Sustainable Coat, is thus presented. In this prototype of smart coat, the printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. The results obtained testing the antenna before and after its integration into cloth, show that the integration does not affect the behaviour of the antenna. Even on the presence of the human body the antenna is able to cover the proposed resonance frequencies (GSM 900 and DCS 1800 bands) with the radiation pattern still being omnidirectional. At last, the exponential growth in the wearable market boost the industrialization process of manufacturing textile antennas. As this research shows, the patch of the antennas can be easily and efficiently cut, embroidered or screen printed by industrial machines. However, the conception of a good industrial substrate that meets all the mechanical and electromagnetic requirements of textile antennas is still a challenge. Following the continuous substrate concept presented and demonstrated through the E-Caption, a new concept is proposed: the continuous Substrate Integrating the Ground Plane (SIGP). The SIGP is a novel textile material that integrates the dielectric substrate and the conductive ground plane in a single material, eliminating one laminating process. Three SIGP, that are weft knitted spacer fabrics having one conductive face, were developed in partnership with the Borgstena Textile Portugal Lda, creating synergy between research in the academy and industry. The results of testing the performance of the SIGP materials show that the integration of the ground plane on the substrate changes the dielectric constant of the material, as a consequence of varying the thickness. Despite this, after the accurate dielectric and electrical characterization, the SIGP I material has shown a good performance as dielectric substrate of a microstrip patch antenna for RF energy harvesting. This result is very promising for boosting the industrial fabrication of microstrip patch textile antennas and their mass production and dissemination into the IoT network, guiding future developments of smart clothing and wearables.Os atuais desenvolvimentos socioeconómicos e tendências de estilo de vida apontam para um crescimento do consumo de produtos e processos tecnológicos, impulsionado por conceitos emergentes como a Internet das Coisas, onde tudo tudo está conectado em uma única rede. Por esta razão, as tecnologias usáveis (wearable) estão a afirmar-se propondo soluções que tornam o utilizador possivelmente através das suas roupas, capaz de comunicar com e fazer parte desta rede. Os sistemas de comunicações sem fios são constituídos por diversos componentes eletrónicos, que com o passar dos anos foram sendo miniaturizados e fabricados em materiais flexíveis, tais como as baterias, os sensores, as unidades de processamento de dados, as interconexões e as antenas. Tornar os sistemas de comunicações sem fios em sistemas usáveis requer trabalho de investigação exigente. Nomeadamente, o desenvolvimento de antenas usáveis tem sido um desafio, devido às antenas serem tradicionalmente desenvolvidas em substratos rígidos, que dificultam a sua integração no vestuário. Dessa forma, considerando a flexibilidade e as propriedades dielétricas dos materiais têxteis, as antenas têxteis trazem a promessa de permitir a interacção dos utilizadores com os dispositivos eletrónicos através da roupa, tornando os dispositivos menos invasivos e mais discretos. As antenas têxteis combinam os materiais têxteis tradicionais com novas tecnologias e emergem assim como uma potencial interface de fronteira entre seres humanos-tecnologias-ambientes. Expandindo assim a interação entre o utilizador e os dispositivos eletrónicos ao recurso do vestuário. Assim, através das antenas têxteis, o vestuário torna-se uma parte ativa nos sistemas de comunicação sem fios, visando aplicações como rastreamento e navegação, computação móvel, monitorização de saúde, entre outros. Para isto, as antenas para vestir devem ser finas, leves, de fácil manutenção, robustas e de baixo custo para produção em massa e comercialização. Desta forma, as antenas planares do tipo patch microstrip têm sido propostas para aplicações em vestuário, pois apresentam todas estas características e também são adaptáveis a qualquer superfície. Estas antenas são geralmente formadas pela sobreposição de camadas condutoras (elemento radiante e plano de massa) e dielétricas (substrato). Além disso, as antenas patch microstrip irradiam perpendicularmente ao plano de massa, que bloqueia a radiação da antena, garantindo que o corpo humano é exposto apenas a uma fração muito pequena da radiação. Para desenvolver este tipo de antena, é crucial conhecer as propriedades dos materiais têxteis, bem como as técnicas de fabricação para conectar as camadas, com cola, costuras, folhas adesivas, entre outros. Diversas propriedades dos materiais influenciam o comportamento da antena. Por exemplo, a permitividade e a espessura do substrato determinam a largura de banda e a eficiência de uma antena planar. O uso de têxteis em antenas usáveis requer assim uma caracterização precisa das suas propriedades. Os têxteis condutores elétricos são materiais específicos que estão disponíveis comercialmente em diversas formas e têm sido utilizados com sucesso para fabricar o elemento radiante e o plano de massa das antenas. Para fabricar o substrato dielétrico têm sido utilizados materiais têxteis convencionais. Geralmente, os materiais têxteis apresentam uma constante dielétrica (εr) muito baixa, o que reduz as perdas de ondas superficiais e aumenta a largura de banda da antena. No entanto, os materiais têxteis estão constantemente a trocar moléculas de água com o ambiente em que estão inseridos, o que afeta as suas propriedades eletromagnéticas. Além disso, os tecidos e os outros materiais têxteis planares são materiais porosos, anisotrópicos e compressíveis, cuja espessura e densidade variam sob muito baixas pressões. Portanto, é importante saber como estas grandezas e características estruturais influenciam o comportamento da antena, de forma a minimizar os efeitos indesejáveis. Para explicar algumas das influências do material têxtil no desempenho das antenas usáveis, esta Tese de Doutoramento começa por fazer o estado da arte sobre os pontos-chave para o desenvolvimento de antenas têxteis, desde a escolha dos materiais têxteis até ao processo de fabrico da antena. Além disso, a tese identifica e apresenta uma análise dos materiais têxteis e técnicas de fabricação que têm sido utilizados e referidos na literatura. A caracterização rigorosa dos materiais têxteis para usar como substrato dielétrico em sistemas usáveis é fundamental. No entanto, pouca informação existe sobre a caracterização das propriedades eletromagnéticas dos têxteis vulgares. Como já referido, os tecidos, malhas e não-tecidos são materiais heterogéneos, altamente porosos, compressíveis e facilmente influenciados pelas condições higrométricas ambientais, dificultando a sua caracterização eletromagnética. Não havendo nenhum método padrão, vários autores têm vindo a adaptar algumas técnicas para a caracterização dielétrica dos materiais têxteis. Esta Tese de Doutoramento foca a caracterização dielétrica dos materiais têxteis, revendo os métodos ressonantes e não ressonantes que foram propostos para caracterizar os materiais têxteis e o couro. Além disso, esta Tese de Doutoramento resume a caracterização de dieléctricos têxteis feita através dos métodos revistos e que foi validada testando antenas que apresentaram um bom desempenho. No seguimento da revisão, apresenta-se uma Técnica Experimental Baseada em Ressonância. Esta nova técnica baseia-se na teoria da perturbação de ressonância, sendo a permitividade e tangente de perda extraídas com base nas mudanças de frequência causadas pela introdução de um superstrato no elemento radiante de uma antena patch microstrip. Os resultados de caracterização obtidos através deste método revelam que, ao posicionar a face mais rugosa do material em teste em contato com a placa de ressonância, o valor da constante dielétrica extraída é inferior ao valor extraído quando esta face é colocada ao contrário. Com base nesta observação, as propriedades estruturais da superfície dos materiais têxteis foram investigadas e a sua influência no desempenho das antenas foi analisada. Assim, esta Tese de Doutoramento relaciona os resultados da caracterização dielétrica com alguns parâmetros estruturais dos materiais, como rugosidade da superfície, porosidades superficial e total. Os resultados mostram que tanto a rugosidade como a porosidade superficial das amostras influenciam os resultados, que dependem assim do posicionamento do material que está a ser testado. Também foi analisada a influência do posicionamento do material dielétrico na performance das antenas têxteis tipo patch microstrip. Para isso, foram desenvolvidos e testados doze protótipos de antenas patch microstrip. Os resultados mostram que, apesar das diferenças observadas durante o processo de caracterização, o valor médio da permitividade é adequado para a modelação das antenas, garantindo um bom desempenho. De acordo com o relatório da Comissão Europeia, “Internet das Coisas - Um plano de ação para a Europa”, emitido em 2009, nos próximos anos a Internet das Coisas poderá melhorar a qualidade de vida das pessoas, nomeadamente pela monitorização da saúde. No contexto das Redes de Sensores Sem Fios do Corpo Humano, a integração de antenas têxteis para recolha de energia em roupas inteligentes é uma solução particularmente interessante, pois permite uma alimentação sem fios e contínua dos dispositivos. De fato, nos dispositivos usáveis a substituição de baterias não é fácil de praticar. Um dos objetivos específicos desta Tese de Doutoramento é, portanto, descrever o conceito de recolha de energia e apresentar o estado da arte sobre antenas têxteis para recolha de energia proveniente da Rádio Frequência (RF). Nesta tese, é também proposta uma antena impressa do tipo monopolo de dupla banda, fabricada em substrato têxtil, para recolha de energia eletromagnética, operando nas bandas GSM 900 e DCS 1800. A antena visa recolher energia para alimentar os nós de sensores de um sistema usável para monitorização da saúde. Os ganhos da antena apresentada foram cerca de 1.8 dBi e 2.06 dBi, aliados a uma eficiência de radiação de 82% e 77.6% para as faixas de frequência mais baixa e alta, respetivamente. Para entender e melhorar o desempenho da antena impressa tipo monopolo de dupla banda em substrato têxtil, várias técnicas de fabrico foram testadas através de testes preliminares, de forma a identificar as técnicas promissoras e a descartar as ineficientes, como é o caso da técnica de colagem. De seguida, analisou-se a influência de vários parâmetros das técnicas de fabrico sobre o desempenho da antena, como o uso de vapor durante a laminação, o tipo de folha adesiva, a orientação dos elementos irradiantes e outros. Para isto, sete protótipos da antena têxtil monopolar impressa foram fabricados por técnicas de laminação e bordado. As medições da resistência elétrica superficial, Rs, mostrou que a presença da folha adesiva usada no processo de laminagem pode reduzir a condutividade dos materiais condutores. Apesar disso, ao medir o S11 das antenas impressas tipo monopolo produzidas por laminagem, os resultados mostram que as antenas têm uma boa adaptação da impedância. Os resultados também mostram que a orientação do tecido condutor, neste caso um tafetá, não influencia o desempenho das antenas. No entanto, ao testar antenas bordadas, os resultados mostram que a direção e o número de pontos no bordado podem influenciar o desempenho da antena e, portanto, estas são características que devem ser consideradas durante a fabricação. De um modo geral, as antenas têxteis funcionam bem e seus resultados suportam e dão origem ao um novo conceito de substrato contínuo para melhorar a integração de antenas têxteis no vestuário, de maneira mais confortável e elegante. A tese apresenta um protótipo demonstrador deste conceito, o E-Caption: A Smart and Sustainable Coat. Neste protótipo de casaco inteligente, a antena impressa está totalmente integrada, pois o seu substrato dielétrico é o próprio mat

    Study and miniaturisation of antennas for ultra wideband communication systems

    Get PDF
    PhDWireless communications have been growing with an astonishing rate over the past few years and wireless terminals for future applications are required to provide diverse services. This rising demand prompts the needs for antennas able to cover multiple bandwidths or an ultrawide bandwidth for various systems. Since the release by the Federal Communications Commission (FCC) of a bandwidth of 7.5 GHz (from 3.1 GHz to 10.6 GHz) for ultra wideband (UWB) wireless communications, UWB has been rapidly evolving as a potential wireless technology and UWB antennas have consequently drawn more and more attention from both academia and industries worldwide. Unlike traditional narrow band antennas, design and analysis of UWB antennas are facing more challenges and difficulties. A competent UWB antenna should be capable of operating over an ultra wide bandwidth as assigned by the FCC. At the same time, a small and compact antenna size is highly desired, due to the integration requirement of entire UWB systems. Another key requirement of UWB antennas is the good time domain behaviour, i.e. a good impulse response with minimal distortion. This thesis focuses on UWB antenna miniaturisation and analysis. Studies have been undertaken to cover the aspects of UWB fundamentals and antenna theory. Extensive investigations are also conducted on three different types of miniaturised UWB antennas. 5 The first type of miniaturised UWB antenna studied in this thesis is the loaded orthogonal half disc monopole antenna. An inductive load is introduced to broaden the impedance bandwidth as well as the pattern bandwidth, in other words, an equivalent size reduction is realised. The second type of miniaturised UWB antenna is the printed half disc monopole antenna. By simply halving the original antenna and tuning the width of the coplanar ground plane, a significant more than 50% size reduction is achieved. The third type of miniaturised UWB antenna is the printed quasi-self-complementary antenna. By exploiting a quasi-self-complementary structure and a built-in matching section, a small and compact antenna dimension is achieved. The performances and characteristics of the three types of miniaturised UWB antennas are studied both numerically and experimentally and the design parameters for achieving optimal operation of the antennas are also analysed extensively in order to understand the antenna operations. Also, time domain performance of the Coplanar Waveguide (CPW)-fed disc monopole antenna is examined in this thesis to demonstrate the importance of time domain study on UWB antennas. Over the past few years of my PhD study, I feel honoured and lucky to work with some of the most prestigious researchers in the Department of Electronic Engineering, Queen Mary, University of London. I would like to show my most cordial gratitude to those who have been helping me during the past few years. There would be no any progress without their generous and sincere support. First of all, I would like to thank my supervisors Professor Clive Parini and Professor Xiaodong Chen, for their kind supervision and encouragement. I am impressed by their notable academic background and profound understanding of the subjects, which have proved to be immense benefits to me. It has been my great pleasure and honour to be under their supervision and work with them. Second of all, I would like to thank Mr John Dupuy for his help in the fabrication and measurement of antennas I have designed during my PhD study. Also, a special acknowledgement goes to all of the staff for all the assistance throughout my graduate program
    • …
    corecore