916 research outputs found

    Southwest Research Institute assistance to NASA in biomedical areas of the technology utilization program

    Get PDF
    The activities are reported of the NASA Biomedical Applications Team at Southwest Research Institute between 25 August, 1972 and 15 November, 1973. The program background and methodology are discussed along with the technology applications, and biomedical community impacts

    Biomedical and Human Factors Requirements for a Manned Earth Orbiting Station

    Get PDF
    This report is the result of a study conducted by Republic Aviation Corporation in conjunction with Spacelabs, Inc.,in a team effort in which Republic Aviation Corporation was prime contractor. In order to determine the realistic engineering design requirements associated with the medical and human factors problems of a manned space station, an interdisciplinary team of personnel from the Research and Space Divisions was organized. This team included engineers, physicians, physiologists, psychologists, and physicists. Recognizing that the value of the study is dependent upon medical judgments as well as more quantifiable factors (such as design parameters) a group of highly qualified medical consultants participated in working sessions to determine which medical measurements are required to meet the objectives of the study. In addition, various Life Sciences personnel from NASA (Headquarters, Langley, MSC) participated in monthly review sessions. The organization, team members, consultants, and some of the part-time contributors are shown in Figure 1. This final report embodies contributions from all of these participants

    Index to NASA Tech Briefs, 1972

    Get PDF
    Abstracts of 1972 NASA Tech Briefs are presented. Four indexes are included: subject, personal author, originating center, and Tech Brief number

    A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels

    Get PDF
    The molecules in our breath can provide a wealth of information about the health and well-being of a person. The level of carbon dioxide (CO2) is not only a sign of life but also when combined with the level of exhaled oxygen provides valuable health information in the form of our metabolic rate. We report upon the development of a MEMS-based non-dispersive infrared CO2 sensor for inclusion in a hand held portable breath analyser. Our novel sensor system comprises a thermopile detector and low power MEMS silicon on insulator (SOI) wideband infrared (IR) emitter. A lock-in amplifier design permits a CO2 concentration of 50 ppm to be detected on gas bench rig. Different IR path lengths were studied with gases in dry and humid (25% and 50% RH) in order to design a sensor suitable for detecting CO2 in breath with concentrations in the range of 4 to 5%. A breath analyser was constructed from acetal and in part 3D printed with a side-stream sampling mechanism and tested on a range of subjects with two data-sets presented here. The performance of the novel MEMS based sensor was validated using a reference commercial breath-by-breath sensor and produced comparable results and gave a response time of 1.3 s. Further work involves the detection of other compounds on breath for further metabolic analysis and reducing the overall resolution of our MEMS sensor system from ca. 250 ppm to 10 ppm

    Advances in Integrated Circuits and Systems for Wearable Biomedical Electrical Impedance Tomography

    Get PDF
    Electrical impedance tomography (EIT) is an impedance mapping technique that can be used to image the inner impedance distribution of the subject under test. It is non-invasive, inexpensive and radiation-free, while at the same time it can facilitate long-term and real-time dynamic monitoring. Thus, EIT lends itself particularly well to the development of a bio-signal monitoring/imaging system in the form of wearable technology. This work focuses on EIT system hardware advancement using complementary metal oxide semiconductor (CMOS) technology. It presents the design and testing of application specific integrated circuit (ASIC) and their successful use in two bio-medical applications, namely, neonatal lung function monitoring and human-machine interface (HMI) for prosthetic hand control. Each year fifteen million babies are born prematurely, and up to 30% suffer from lung disease. Although respiratory support, especially mechanical ventilation, can improve their survival, it also can cause injury to their vulnerable lungs resulting in severe and chronic pulmonary morbidity lasting into adulthood, thus an integrated wearable EIT system for neonatal lung function monitoring is urgently needed. In this work, two wearable belt systems are presented. The first belt features a miniaturized active electrode module built around an analog front-end ASIC which is fabricated with 0.35-µm high-voltage process technology with ±9 V power supplies and occupies a total die area of 3.9 mm². The ASIC offers a high power active current driver capable of up to 6 mAp-p output, and wideband active buffer for EIT recording as well as contact impedance monitoring. The belt has a bandwidth of 500 kHz, and an image frame rate of 107 frame/s. To further improve the system, the active electrode module is integrated into one ASIC. It contains a fully differential current driver, a current feedback instrumentation amplifier (IA), a digital controller and multiplexors with a total die area of 9.6 mm². Compared to the conventional active electrode architecture employed in the first EIT belt, the second belt features a new architecture. It allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It has intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio (CMRR) up to 74 dB, and with active gain, the noise level can be reduced by a factor of √3 using the adjacent scan. The second belt has a wider operating bandwidth of 1 MHz and multi-frequency operation. The image frame rate is 122 frame/s, the fastest wearable EIT reported to date. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1° variation across all channels. In addition the ASIC facilitates several other functionalities to provide supplementary clinical information at the bedside. With the advancement of technology and the ever-increasing fusion of computer and machine into daily life, a seamless HMI system that can recognize hand gestures and motions and allow the control of robotic machines or prostheses to perform dexterous tasks, is a target of research. Originally developed as an imaging technique, EIT can be used with a machine learning technique to track bones and muscles movement towards understanding the human user’s intentions and ultimately controlling prosthetic hand applications. For this application, an analog front-end ASIC is designed using 0.35-µm standard process technology with ±1.65 V power supplies. It comprises a current driver capable of differential drive and a low noise (9μVrms) IA with a CMRR of 80 dB. The function modules occupy an area of 0.07 mm². Using the ASIC, a complete HMI system based on the EIT principle for hand prosthesis control has been presented, and the user’s forearm inner bio-impedance redistribution is assessed. Using artificial neural networks, bio-impedance redistribution can be learned so as to recognise the user’s intention in real-time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation. Experiments with five subjects show that the system can achieve an overall recognition accuracy of 95.8%

    High-temperature superconducting magnetometers for on-scalp MEG

    Get PDF
    In the growing field of on-scalp magnetoencephalography (MEG), brain activity is studied by non-invasively mapping the magnetic fields generated by neuronal currents with sensors that are flexibly placed in close proximity to the subject\u27s head. This thesis focuses on high-temperature superconducting magnetometers made from YBa2Cu3Ox-7 (YBCO), which enables a reduction in the sensor-to-room temperature standoff distance from roughly 2 cm (for conventional MEG systems) down to 1 mm. Because of the higher neuromagnetic signal magnitudes available to on-scalp sensors, simulations predict that even a relatively low-sensitivity (higher noise) full-head on-scalp MEG system can extract more information about brain activity than conventional systems.In the first part of this thesis, the development of high critical temperature (high-Tc) superconducting quantum interference device (SQUID) magnetometers for a 7-channel on-scalp MEG system is described. The sensors are single layer magnetometers with a directly coupled pickup loop made on 10 mm 7 10 mm substrates using bicrystal grain boundary Josephson junctions. We found that the kinetic inductance strongly varies with film quality and temperature. Determination of all SQUID parameters by combining measurements and inductance simulations led to excellent agreement between experimental results and theoretical predictions. This allowed us to perform an in-depth magnetometer optimization. The best magnetometers achieve a magnetic field noise level of 44 fT/√Hz at 78 K. Fabricated test SQUIDs provide evidence that noise levels below 30 fT/√Hz are possible for high quality junctions with fairly low critical currents and in combination with the optimized pickup loop design. Different feedback methods for operation in a densely-packed on-scalp MEG system were also investigated. Direct injection of current into the SQUID loop was identified as the best on-chip feedback method with feedback flux crosstalk below 0.5%. By reducing the operation temperature, the noise level can be further reduced, however, the effective area also decreases because of the decreasing kinetic inductance contribution. We present a method that allows for one-time sensor calibration independent of temperature.In the second part, the design, operation, and performance of the constructed 7-channel on-scalp MEG system based on the fabricated magnetometers is presented. With a dense (2 mm edge-to-edge) hexagonal head-aligned array, the system achieves a small sensor-to-head standoff distance of 1-3 mm and dense spatial sampling. The magnetic field noise levels are 50-130 fT/√Hz and the sensor-to-sensor feedback flux crosstalk is below 0.6%. MEG measurements with the system demonstrate the feasibility of the approach and indicate that our on-scalp MEG system allows retrieval of information unavailable to conventional MEG.In the third part, two alternative magnetometer types are studied for the next generation system. The first alternative is magnetometers based on Dayem bridge junctions instead of bicrystal grain boundary junctions. With a magnetometer based on the novel grooved Dayem bridge junctions, a magnetic field noise level of 63 fT/√Hz could be achieved, which shows that Dayem bridge junctions are starting to become a viable option for single layer magnetometers. The second alternative are high-Tc SQUID magnetometers with an inductively coupled flux transformer. The best device with bicrystal grain boundary junctions reaches a magnetic field noise level below 11 fT/√Hz and outperforms the best single layer device for frequencies above 20 Hz.In the last part, the potential of kinetic inductance magnetometers (KIMs) is investigated. We demonstrate the first high-Tc KIMs, which can be operated in fields of 9-28 \ub5T and achieve a noise level of 4 pT/√Hz at 10 kHz

    Study of man pulling a cart on the moon

    Get PDF
    Metabolic cost evaluation of self-locomotion in simulated lunar gravity using space suits and carts including weight load and surface effect

    Space Station Freedom biomedical monitoring and countermeasures: Biomedical facility hardware catalog

    Get PDF
    This hardware catalog covers that hardware proposed under the Biomedical Monitoring and Countermeasures Development Program supported by the Johnson Space Center. The hardware items are listed separately by item, and are in alphabetical order. Each hardware item specification consists of four pages. The first page describes background information with an illustration, definition and a history/design status. The second page identifies the general specifications, performance, rack interface requirements, problems, issues, concerns, physical description, and functional description. The level of hardware design reliability is also identified under the maintainability and reliability category. The third page specifies the mechanical design guidelines and assumptions. Described are the material types and weights, modules, and construction methods. Also described is an estimation of percentage of construction which utilizes a particular method, and the percentage of required new mechanical design is documented. The fourth page analyzes the electronics, the scope of design effort, and the software requirements. Electronics are described by percentages of component types and new design. The design effort, as well as, the software requirements are identified and categorized

    Southwest Research Institute assistance to NASA in biomedical areas of the Technology Utilization program

    Get PDF
    Technology utilization in biomedical areas, particularly for infants and handicapped person
    • …
    corecore