137 research outputs found

    Interference cancellation schemes for STBC multiuser systems

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Frequency Offset Tolerant Demodulation for Low Data Rate and Narrowband Wireless Sensor Node

    Get PDF
    The issue of frequency offset in low data rate, narrowband and low power communication nodes is considered in this paper. To avoid power hungry precise frequency generation, offset tolerant demodulation and detection schemes are investigated. A Short-Time DFT (ST-DFT) based detection for BFSK is introduced which improves the BER performance of an existing design by almost 1dB. Its BER performance and complexity are also compared to frequency offset tolerant DDBPSK demodulation. Additionally, the effect of wider filter required to capture signal in presence of frequency offset is considered. The trade-off between performance and complexity for different offset values and filter bandwidths is discussed. Both methods work independent of frequency offset; however, it is shown that wider filters do not affect ST-DFT BER performance in contrast with DDBPSK. This robustness is obtained at the expense of increased computational load

    Near far resistant detection for CDMA personal communication systems.

    Get PDF
    The growth of Personal Communications, the keyword of the 90s, has already the signs of a technological revolution. The foundations of this revolution are currently set through the standardization of the Universal Mobile Telecommunication System (UMTS), a communication system with synergistic terrestrial and satellite segments. The main characteristic of the UMTS radio interface, is the provision of ISDN services. Services with higher than voice data rates require more spectrum, thus techniques that utilize spectrum as efficiently as possible are currently at the forefront of the research community interests. Two of the most spectrally efficient multiple access technologies, namely. Code Division Multiple Access (CDMA) and Time Division Multiple Access (TDMA) concentrate the efforts of the European telecommunity.This thesis addresses problems and. proposes solutions for CDMA systems that must comply with the UMTS requirements. Prompted by Viterbi's call for further extending the potential of CDMA through signal processing at the receiving end, we propose new Minimum Mean Square Error receiver architectures. MMSE detection schemes offer significant advantages compared to the conventional correlation based receivers as they are NEar FAr Resistant (NEFAR) over a wide range of interfering power levels. The NEFAR characteristic of these detectors reduces considerably the requirements of the power control loops currently found in commercial CDMA systems. MMSE detectors are also found, to have significant performance gains over other well established interference cancellation techniques like the decorrelating detector, especially in heavily loaded system conditions. The implementation architecture of MMSE receivers can be either Multiple-Input Multiple Output (MIMO) or Single-Input Single-Output. The later offers not only complexity that is comparable to the conventional detector, but also has the inherent advantage of employing adaptive algorithms which can be used to provide both the dispreading and the interference cancellation function, without the knowledge of the codes of interfering users. Furthermore, in multipath fading channels, adaptive MMSE detectors can exploit the multipath diversity acting as RAKE combiners. The later ability is distinctive to MMSE based receivers, and it is achieved in an autonomous fashion, without the knowledge of the multipath intensity profile. The communicator achieves its performance objectives by the synergy of the signal processor and the channel decoder. According to the propositions of this thesis, the form of the signal processor needs to be changed, in order to exploit the horizons of spread spectrum signaling. However, maximum likelihood channel decoding algorithms need not change. It is the way that these algorithms are utilized that needs to be revis ed. In this respect, we identify three major utilization scenarios and an attempt is made to quantify which of the three best matches the requirements of a UMTS oriented CDMA radio interface. Based on our findings, channel coding can be used as a mapping technique from the information bit to a more ''intelligent" chip, matching the ''intelligence" of the signal processor

    Synchronisation in sampled receivers for narrowband digital modulation schemes.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DXN0033576 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Applications of MATLAB in Science and Engineering

    Get PDF
    The book consists of 24 chapters illustrating a wide range of areas where MATLAB tools are applied. These areas include mathematics, physics, chemistry and chemical engineering, mechanical engineering, biological (molecular biology) and medical sciences, communication and control systems, digital signal, image and video processing, system modeling and simulation. Many interesting problems have been included throughout the book, and its contents will be beneficial for students and professionals in wide areas of interest

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Development of a versatile low-power 24 GHz phased array front-end in 90 nm CMOS technology

    Get PDF
    This paper deals with the development of a four-channel low-power Phased Array Front-End (PhA-FE) at 24 GHz, targeting both low-power radar sensors and battery powered transceiver applications. Typically, PhA-FEs are power hungry architectures due to multiple parallel RF channels in the FE and complex algorithms for beam steering or high bit-rate demodulation in the digital part. In contrast, we target in this paper applications where both beam steering algorithms and data demodulation are relatively simple and hence achievable with low-power digital signal processing. More specifically, we report on four significant building blocks of the architecture, a Low Noise Amplifier (LNA), a Vector Modulator Phase Shifter (VMPS), a Quadrature Voltage Controlled Oscillator (QVCO) and an Analogue to Digital Converter (ADC) that have been designed the first three in 90nm and the last in 180nm CMOS technology. The LNA shows 24.4 dB gain, 3.4 dB NF and −24.4 dBm input P1dB. The single quadrant VMPS has more than 90° of phase control range and shows less than 0.7 dB of gain variation over phase shifting. The QVCO which consumes less than 32mW, buffer included, has a tuning range of 8%. The 6bit 20 MS/s ADC consumes 1.8mW

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches
    corecore