26 research outputs found

    Hybrid continuous-discrete-time multi-bit delta-sigma A/D converters with auto-ranging algorithm

    Get PDF
    In wireless portable applications, a large part of the signal processing is performed in the digital domain. Digital circuits show many advantages. The power consumption and fabrication costs are low even for high levels of complexity. A well established and highly automated design flow allows one to benefit from the constant progress in CMOS technologies. Moreover, digital circuits offer robust and programmable signal processing means and need no external components. Hence, the trend in consumer electronics is to further reduce the part of analog signal processing in the receiver chain of wireless transceivers. Consequently, analog-to-digital converters with higher resolutions and bandwidths are constantly required. The ultimate goal is the direct digitization of radio frequency signals, where the conversion would be performed immediately after the front-end amplifier. ΔΣ-modulation-based converters have proved to be the most suitable to achieve the required performance. Switched-capacitor implementations have been widely used over the last two decades. However, recent publications and books have shown that continuous-time architectures can achieve the same performance with lower power consumption. Most designs found throughout the literature use a single- or few-bit internal quantizer with a high-order modulation. As a result, in order to achieve the resolutions and bandwidths required today, the sampling frequency must exceed 100MHz. This approach leads to non-negligible power consumption in the clock generation. Moreover, the presence of such fast squared signals is not suitable for a system-on-chip comprising radio frequency receivers. In this thesis we propose a low-power strategy relying on a large number of internal levels rather than on a high sampling frequency or modulation order. Besides, a hybrid continuous-discrete-time approach is used to take advantage of the accuracy of switched-capacitor circuits and the low power consumption of continuous-time implementation. The sensitivity to clock jitter brought about by the continuous-time stage is reduced by the use of a large number of levels. An auto-ranging algorithm is developed in this thesis to overcome the limitation of a large-size quantizer under low-voltage supply. Finally, the strategy is applied to a design example addressing typical specifications for a Bluetooth receiver with direct conversion

    Broadband Continuous-time MASH Sigma-Delta ADCs

    Get PDF

    Development, Optimisation and Characterisation of a Radiation Hard Mixed-Signal Readout Chip for LHCb

    Get PDF
    The Beetle chip is a radiation hard, 128 channel pipelined readout chip for silicon strip detectors. The front-end consists of a charge-sensitive preamplifier followed by a CR-RC pulse shaper. The analogue pipeline memory is implemented as a switched capacitor array with a maximum latency of 4us. The 128 analogue channels are multiplexed and transmitted off chip in 900ns via four current output drivers. Beside the pipelined readout path, the Beetle provides a fast discrimination of the front-end pulse. Within this doctoral thesis parts of the radiation hard Beetle readout chip for the LHCb experiment have been developed. The overall chip performances like noise, power consumption, input charge rates have been optimised as well as the elimination of failures so that the Beetle fulfils the requirements of the experiment. Furthermore the characterisation of the chip was a major part of this thesis. Beside the detailed measurement of the chip performance, several irradiation tests and an Single Event Upset (SEU) test were performed. A long-time measurement with a silicon strip detector was also part of this work as well as the development and test of a first mass production test setup. The Beetle chip showed no functional failure and only slight degradation in the analogue performance under irradiation of up to 130Mrad total dose. The Beetle chip fulfils all requirements of the vertex detector (VELO), the trigger tracker (TT) and the inner tracker (IT) and is ready for the start of LHCb end of 2007

    Simulation Studies of Digital Filters for the Phase-II Upgrade of the Liquid-Argon Calorimeters of the ATLAS Detector at the High-Luminosity LHC

    Get PDF
    Am Large Hadron Collider und am ATLAS-Detektor werden umfangreiche Aufrüstungsarbeiten vorgenommen. Diese Arbeiten sind in mehrere Phasen gegliedert und umfassen unter Anderem Änderungen an der Ausleseelektronik der Flüssigargonkalorimeter; insbesondere ist es geplant, während der letzten Phase ihren Primärpfad vollständig auszutauschen. Die Elektronik besteht aus einem analogen und einem digitalen Teil: während ersterer die Signalpulse verstärkt und sie zur leichteren Abtastung verformt, führt letzterer einen Algorithmus zur Energierekonstruktion aus. Beide Teile müssen während der Aufrüstung verbessert werden, damit der Detektor interessante Kollisionsereignisse präzise rekonstruieren und uninteressante effizient verwerfen kann. In dieser Dissertation werden Simulationsstudien präsentiert, die sowohl die analoge als auch die digitale Auslese der Flüssigargonkalorimeter optimieren. Die Korrektheit der Simulation wird mithilfe von Kalibrationsdaten geprüft, die im sog. Run 2 des ATLAS-Detektors aufgenommen worden sind. Der Einfluss verschiedener Parameter der Signalverformung auf die Energieauflösung wird analysiert und die Nützlichkeit einer erhöhten Abtastrate von 80 MHz untersucht. Des Weiteren gibt diese Arbeit eine Übersicht über lineare und nichtlineare Energierekonstruktionsalgorithmen. Schließlich wird eine Auswahl von ihnen hinsichtlich ihrer Leistungsfähigkeit miteinander verglichen. Es wird gezeigt, dass ein Erhöhen der Ordnung des Optimalfilters, der gegenwärtig verwendete Algorithmus, die Energieauflösung um 2 bis 3 % verbessern kann, und zwar in allen Regionen des Detektors. Der Wiener Filter mit Vorwärtskorrektur, ein nichtlinearer Algorithmus, verbessert sie um bis zu 10 % in einigen Regionen, verschlechtert sie aber in anderen. Ein Zusammenhang dieses Verhaltens mit der Wahrscheinlichkeit fälschlich detektierter Kalorimetertreffer wird aufgezeigt und mögliche Lösungen werden diskutiert.:1 Introduction 2 An Overview of High-Energy Particle Physics 2.1 The Standard Model of Particle Physics 2.2 Verification of the Standard Model 2.3 Beyond the Standard Model 3 LHC, ATLAS, and the Liquid-Argon Calorimeters 3.1 The Large Hadron Collider 3.2 The ATLAS Detector 3.3 The ATLAS Liquid-Argon Calorimeters 4 Upgrades to the ATLAS Liquid-Argon Calorimeters 4.1 Physics Goals 4.2 Phase-I Upgrade 4.3 Phase-II Upgrade 5 Noise Suppression With Digital Filters 5.1 Terminology 5.2 Digital Filters 5.3 Wiener Filter 5.4 Matched Wiener Filter 5.5 Matched Wiener Filter Without Bias 5.6 Timing Reconstruction, Optimal Filtering, and Selection Criteria 5.7 Forward Correction 5.8 Sparse Signal Restoration 5.9 Artificial Neural Networks 6 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics 6.1 AREUS 6.2 Hit Generation and Sampling 6.3 Pulse Shapes 6.4 Thermal Noise 6.5 Quantization 6.6 Digital Filters 6.7 Statistical Analysis 7 Results of the Readout Electronics Simulation Studies 7.1 Statistical Treatment 7.2 Simulation Verification Using Run-2 Data 7.3 Dependence of the Noise on the Shaping Time 7.4 The Analog Readout Electronics and the ADC 7.5 The Optimal Filter (OF) 7.6 The Wiener Filter 7.7 The Wiener Filter with Forward Correction (WFFC) 7.8 Final Comparison and Conclusions 8 Conclusions and Outlook AppendicesThe Large Hadron Collider and the ATLAS detector are undergoing a comprehensive upgrade split into multiple phases. This effort also affects the liquid-argon calorimeters, whose main readout electronics will be replaced completely during the final phase. The electronics consist of an analog and a digital portion: the former amplifies the signal and shapes it to facilitate sampling, the latter executes an energy reconstruction algorithm. Both must be improved during the upgrade so that the detector may accurately reconstruct interesting collision events and efficiently suppress uninteresting ones. In this thesis, simulation studies are presented that optimize both the analog and the digital readout of the liquid-argon calorimeters. The simulation is verified using calibration data that has been measured during Run 2 of the ATLAS detector. The influence of several parameters of the analog shaping stage on the energy resolution is analyzed and the utility of an increased signal sampling rate of 80 MHz is investigated. Furthermore, a number of linear and non-linear energy reconstruction algorithms is reviewed and the performance of a selection of them is compared. It is demonstrated that increasing the order of the Optimal Filter, the algorithm currently in use, improves energy resolution by 2 to 3 % in all detector regions. The Wiener filter with forward correction, a non-linear algorithm, gives an improvement of up to 10 % in some regions, but degrades the resolution in others. A link between this behavior and the probability of falsely detected calorimeter hits is shown and possible solutions are discussed.:1 Introduction 2 An Overview of High-Energy Particle Physics 2.1 The Standard Model of Particle Physics 2.2 Verification of the Standard Model 2.3 Beyond the Standard Model 3 LHC, ATLAS, and the Liquid-Argon Calorimeters 3.1 The Large Hadron Collider 3.2 The ATLAS Detector 3.3 The ATLAS Liquid-Argon Calorimeters 4 Upgrades to the ATLAS Liquid-Argon Calorimeters 4.1 Physics Goals 4.2 Phase-I Upgrade 4.3 Phase-II Upgrade 5 Noise Suppression With Digital Filters 5.1 Terminology 5.2 Digital Filters 5.3 Wiener Filter 5.4 Matched Wiener Filter 5.5 Matched Wiener Filter Without Bias 5.6 Timing Reconstruction, Optimal Filtering, and Selection Criteria 5.7 Forward Correction 5.8 Sparse Signal Restoration 5.9 Artificial Neural Networks 6 Simulation of the ATLAS Liquid-Argon Calorimeter Readout Electronics 6.1 AREUS 6.2 Hit Generation and Sampling 6.3 Pulse Shapes 6.4 Thermal Noise 6.5 Quantization 6.6 Digital Filters 6.7 Statistical Analysis 7 Results of the Readout Electronics Simulation Studies 7.1 Statistical Treatment 7.2 Simulation Verification Using Run-2 Data 7.3 Dependence of the Noise on the Shaping Time 7.4 The Analog Readout Electronics and the ADC 7.5 The Optimal Filter (OF) 7.6 The Wiener Filter 7.7 The Wiener Filter with Forward Correction (WFFC) 7.8 Final Comparison and Conclusions 8 Conclusions and Outlook Appendice

    Fast data acquisition for silicon tracking detectors at high rates

    Get PDF
    Silicon tracking detectors play a key role in many current high energy physics experiments. To enhance experimental sensitivities for searches for new physics, beam energies and event rates are constantly being increased, which leads to growing volumes of detector data that have to be processed. This thesis covers high-speed data acquisition for silicon tracking detectors in the context of the Mu3e experiment and future hadron collider experiments. For the Mu3e experiment, a vertical slice of the trigger-less readout system is realized as a beam telescope consisting of 8 layers of pixel sensors that are read out using a prototype of the Mu3e front-end board. The performance of the full readout system is studied during beam tests. Sensor hit rates of up to 5 MHz can be handled without significant losses. Hence, the system fulfils the requirements for the first phase of the experiment. To fully exploit the potential of silicon tracking detectors at future hadron collider experiments, the implementation of high-speed data links is mandatory. Wireless links operating at frequencies of 60 GHz and above present an attractive alternative to electrical and optical links, as they offer high bandwidth, small form factor and low power consumption. This thesis describes readout concepts for tracking detectors applying wireless data transfer and presents studies of wireless data transmission

    Robust real-time control of an adaptive optics system

    Get PDF
    This research contributes to the understanding of the limitations when designing a robust control real-time system for Adaptive Optics (AO). One part of the research is a new method regarding the evaluation of a Shack-Hartmann wavefront sensor (SHWFS) to enhance the overall performance. The method is presented based on the application of a Field Programmable Gate Array (FPGA) using Connected Component Labeling (CCL) for blob detection. The FPGA has been utilized since the resulting delay is crucial for the general AO performance. In this regard, the FPGA may accelerate the evaluation largely by its parallelism. The developed algorithm does not rely on a fixed assignment of the camera sensor area to the lenslet array to maximize the dynamic range. In extension to the SHWFS evaluation, a new rapid control prototyping (RCP) system based on hard real-time RTAI-patched Linux kernel has been developed. This system includes the required hardware e.g.~the analog output cards and FPGA based frame-grabber. Based upon a Simulink model, accelerated C/C++ code is automatically generated which uses the available parallel features of the processor. A continuative contribution is the application of a robust control scheme using H-infinity methods for designing a controller while considering uncertainty of the identified model. For synthesizing the controller, a special optimization technique called non-smooth mu-synthesis is utilized which minimizes the H-infinity norm while coping with pre-specified controller schemes. Depending on the pre-specified controller scheme, the resulting controller can be computationally costly but the RCP approach is designed to cope with the problem. Based on simulations and according to experiments, the validity of the identified models of the AO setup is assured. At the same time, the enhanced performance of the new RCP setup is demonstrated.Die wissenschaftliche Arbeit trägt maßgeblich zum Verständnis der gängigen Limitierungen bei robusten echtzeit-fähigen Regelungssystemen für Adaptiv Optische (AO) Systeme bei. Ein wesentlicher Teil der Arbeit befasst sich mit einer neuartigen Methode der Auswertung eines Shack-Hartmann Wellenfrontsensors (SHWFS). Die Methode basiert auf der Anwendung eines Field Programmable Gate Arrays (FPGA) zur Auswertung des SHWFS. Die zu Grunde liegende Methode ist ein Resultat der Graphentheorie zur Erkennung zusammenhängender Bildbereiche. Der Einsatz eines FPGA ermöglicht hierbei, dass die resultierende Verzögerung durch die Auswertung des SHWFS auf ein Minimum reduziert wird. Hinzu kommt, dass die neuartige Auswertungsmethode den dynamischen Bereich des Wellenfrontsensors gegenüber dem üblichen Verfahren erweitert, da für die Methode keine feste Zuordnung der Spots zu dem Linsenarray notwendig ist. Zusätzlich zu dem neuartigen Verfahren für die Auswertung wurde ein Rapid Control Prototyping (RCP) System entworfen, welches auf einem echtzeitfähigen Linux Kernel basiert. Die Echtzeitfähigkeit wird durch die Verwendung des Real-Time Application Interface for Linux (RTAI) erreicht. Der Entwurf des RCP Systems umfasst die Entwicklung spezieller Hardware wie beispielsweise eine analoge Ausgangskarte und der PCIe FPGA Framegrabber. Aus einem Simulink Modell wird automatisch C/C++ Quellcode generiert. Dieser generierte Code nutzt die vorhandenen parallelen Erweiterungen des Prozessors zur Beschleunigung der vorkommenden Berechnungen. Basierend auf diesem System wurde ein robustes Regelungsverfahren angewendet, welches auf der H_infty Entwurfsmethodik basiert. Das Entwurfverfahren des Reglers (non-smooth mu Synthese) berücksichtigt die vorhandene Unsicherheit der identifizierten Modelle bereits während der Synthese. Das Verfahren ermöglicht die H_infty Norm des geschlossenen Regelkreises zu minimieren, wobei die Regler-Struktur vorgegeben werden kann. Basierend auf verschiedenen Simulationen und experimentellen Versuchen wurde die Gültigkeit der identifizierten Modelle des AO Systems nachgewiesen. Zudem wird gezeigt, dass das entworfene RCP System deutlich leistungsfähiger als vergleichbare Systeme ist und somit eine deutlich verbesserte Performance aufweist

    Time interleaved counter analog to digital converters

    Get PDF
    The work explores extending time interleaving in A/D converters, by applying a high-level of parallelism to one of the slowest and simplest types of data-converters, the counter ADC. The motivation for the work is to realise high-performance re-configurable A/D converters for use in multi-standard and multi-PHY communication receivers with signal bandwidths in the 10s to 100s of MHz. The counter ADC requires only a comparator, a ramp signal, and a digital counter, where the comparator compares the sampled input against all possible quantisation levels sequentially. This work explores arranging counter ADCs in large time-interleaved arrays, building a Time Interleaved Counter (TIC) ADC. The key to realising a TIC ADC is distributed sampling and a global multi-phase ramp generator realised with a novel figure-of-8 rotating resistor ring. Furthermore Counter ADCs allow for re-configurability between effective sampling rate and resolution due to their sequential comparison of reference levels in conversion. A prototype TIC ADC of 128-channels was fabricated and measured in 0.13μm CMOS technology, where the same block can be configured to operate as a 7-bit 1GS/s, 8-bit 500MS/s, or 9-bit 250MS/s dataconverter. The ADC achieves a sub 400fJ/step FOM in all modes of configuration
    corecore