1,864 research outputs found

    Low Power and Small Area Mixed-Signal Circuits:ADCs, Temperature Sensors and Digital Interfaces

    Get PDF

    Design of Energy-Efficient A/D Converters with Partial Embedded Equalization for High-Speed Wireline Receiver Applications

    Get PDF
    As the data rates of wireline communication links increases, channel impairments such as skin effect, dielectric loss, fiber dispersion, reflections and cross-talk become more pronounced. This warrants more interest in analog-to-digital converter (ADC)-based serial link receivers, as they allow for more complex and flexible back-end digital signal processing (DSP) relative to binary or mixed-signal receivers. Utilizing this back-end DSP allows for complex digital equalization and more bandwidth-efficient modulation schemes, while also displaying reduced process/voltage/temperature (PVT) sensitivity. Furthermore, these architectures offer straightforward design translation and can directly leverage the area and power scaling offered by new CMOS technology nodes. However, the power consumption of the ADC front-end and subsequent digital signal processing is a major issue. Embedding partial equalization inside the front-end ADC can potentially result in lowering the complexity of back-end DSP and/or decreasing the ADC resolution requirement, which results in a more energy-effcient receiver. This dissertation presents efficient implementations for multi-GS/s time-interleaved ADCs with partial embedded equalization. First prototype details a 6b 1.6GS/s ADC with a novel embedded redundant-cycle 1-tap DFE structure in 90nm CMOS. The other two prototypes explain more complex 6b 10GS/s ADCs with efficiently embedded feed-forward equalization (FFE) and decision feedback equalization (DFE) in 65nm CMOS. Leveraging a time-interleaved successive approximation ADC architecture, new structures for embedded DFE and FFE are proposed with low power/area overhead. Measurement results over FR4 channels verify the effectiveness of proposed embedded equalization schemes. The comparison of fabricated prototypes against state-of-the-art general-purpose ADCs at similar speed/resolution range shows comparable performances, while the proposed architectures include embedded equalization as well

    Time-based, Low-power, Low-offset 5-bit 1 GS/s Flash ADC Design in 65nm CMOS Technology

    Get PDF
    Low-power, medium resolution, high-speed analog-to-digital converters (ADCs) have always been important block which have abundant applications such as digital signal processors (DSP), imaging sensors, environmental and biomedical monitoring devices. This study presents a low power Flash ADC designed in nanometer complementary metal-oxide semiconductors (CMOS) technology. Time analysis on the output delay of the comparators helps to generate one more bit. The proposed technique reduced the power consumption and chip area substantially in comparison to the previous state-of-the-art work. The proposed ADC was developed in TSMC 65nm CMOS technology. The offset cancellation technique was embedded in the proposed comparator to decrement the static offset of the comparator. Moreover, one more bit was generated without using extra comparators. The proposed ADC achieved 4.1 bits ENOB at input Nyquist frequency. The simulated differential and integral non-linearity static tests were equal to +0.26/-0.17 and +0.22/-0.15, respectively. The ADC consumed 7.7 mW at 1 GHz sampling frequency, achieving 415 fJ/Convstep Figure of Merit (FoM)

    Development of a 6-bit 15.625 MHz CMOS two-step flash analog-to-digital converter for a low dead time sub-nanosecond time measurement system

    Get PDF
    The development of a 6-bit 15.625 MHz CMOS two-step analog-to-digital converter (ADC) is presented. The ADC was developed for use in a low dead time, high-performance, sub-nanosecond time-to-digital converter (TDC). The TDC is part of a new custom CMOS application specific integrated circuit (ASIC) that will be incorporated in the next generation of front-end electronics for high-performance positron emission tomography imaging. The ADC is based upon a two-step flash architecture that reduces the comparator count by a factor-of-two when compared to a traditional flash ADC architecture and thus a significant reduction in area, power dissipation, and input capacitance of the converter is achieved. The converter contains time-interleaved auto-zeroed CMOS comparators. These comparators utilize offset correction in both the preamplifier and the subsequent regenerative latch stage to guarantee good integral and differential non-linearity performance of the converter over extreme process conditions. Also, digital error correction was employed to overcome most of the major metastability problems inherent in flash converters and to guarantee a completely monotonic transfer function. Corrected comparator offset measurements reveal that the CMOS comparator design maintains a worse case input-referred offset of less than 1 mV at conversion rates up to 8 MHz and less than a 2 mV offset at conversion rates as high as 16 MHz while dissipating less than 2.6 mW. Extensive laboratory measurements indicate that the ADC achieves differential and integral non-linearity performance of less than ±1/2 LSB with a 20 mV/LSB resolution. The ADC dissipates 90 mW from a single 5 V supply and occupies a die area of 1.97 mm x 1.13 mm in 0.8 μm CMOS technology

    A design tool for high-resolution high-frequency cascade continuous- time Σ∆ modulators

    Get PDF
    Event: Microtechnologies for the New Millennium, 2007, Maspalomas, Gran Canaria, SpainThis paper introduces a CAD methodology to assist the de signer in the implementation of continuous-time (CT) cas- cade Σ∆ modulators. The salient features of this methodology ar e: (a) flexible behavioral modeling for optimum accuracy- efficiency trade-offs at different stages of the top-down synthesis process; (b) direct synthesis in the continuous-time domain for minimum circuit complexity and sensitivity; a nd (c) mixed knowledge-based and optimization-based architec- tural exploration and specification transmission for enhanced circuit performance. The applicability of this methodology will be illustrated via the design of a 12 bit 20 MHz CT Σ∆ modulator in a 1.2V 130nm CMOS technology.Ministerio de Ciencia y Educación TEC2004-01752/MICMinisterio de Industria, Turismo y Comercio FIT-330100-2006-134 SPIRIT Projec

    A 1.2-V 10- µW NPN-Based Temperature Sensor in 65-nm CMOS With an Inaccuracy of 0.2 °C (3σ) From 70 °C to 125 °C

    Get PDF
    An NPN-based temperature sensor with digital output transistors has been realized in a 65-nm CMOS process. It achieves a batch-calibrated inaccuracy of ±0.5 ◦C (3¾) and a trimmed inaccuracy of ±0.2 ◦C (3¾) over the temperature range from −70 ◦C to 125 ◦C. This performance is obtained by the use of NPN transistors as sensing elements, the use of dynamic techniques, i.e. correlated double sampling and dynamic element matching, and a single room-temperature trim. The sensor draws 8.3 μA from a 1.2-V supply and occupies an area of 0.1 mm2

    Digitally Interfaced Analog Correlation Filter System for Object Tracking Applications

    Get PDF
    Advanced correlation filters have been employed in a wide variety of image processing and pattern recognition applications such as automatic target recognition and biometric recognition. Among those, object recognition and tracking have received more attention recently due to their wide range of applications such as autonomous cars, automated surveillance, human-computer interaction, and vehicle navigation.Although digital signal processing has long been used to realize such computational systems, they consume extensive silicon area and power. In fact, computational tasks that require low to moderate signal-to-noise ratios are more efficiently realized in analog than digital. However, analog signal processing has its own caveats. Mainly, noise and offset accumulation which degrades the accuracy, and lack of a scalable and standard input/output interface capable of managing a large number of analog data.Two digitally-interfaced analog correlation filter systems are proposed. While digital interfacing provided a standard and scalable way of communication with pre- and post-processing blocks without undermining the energy efficiency of the system, the multiply-accumulate operations were performed in analog. Moreover, non-volatile floating-gate memories are utilized as storage for coefficients. The proposed systems incorporate techniques to reduce the effects of analog circuit imperfections.The first system implements a 24x57 Gilbert-multiplier-based correlation filter. The I/O interface is implemented with low-power D/A and A/D converters and a correlated double sampling technique is implemented to reduce offset and lowfrequency noise at the output of analog array. The prototype chip occupies an area of 3.23mm2 and demonstrates a 25.2pJ/MAC energy-efficiency at 11.3 kVec/s and 3.2% RMSE.The second system realizes a 24x41 PWM-based correlation filter. Benefiting from a time-domain approach to multiplication, this system eliminates the need for explicit D/A and A/D converters. Careful utilization of clock and available hardware resources in the digital I/O interface, along with application of power management techniques has significantly reduced the circuit complexity and energy consumption of the system. Additionally, programmable transconductance amplifiers are incorporated at the output of the analog array for offset and gain error calibration. The prototype system occupies an area of 0.98mm2 and is expected to achieve an outstanding energy-efficiency of 3.6pJ/MAC at 319kVec/s with 0.28% RMSE

    A new offset cancellation technique for temperature sensors & Design of 8-bit decimation filter for biomedical applications

    Get PDF
    In our day to day life there are lot of things which we need to sense and then decide the course of action according to it. Many of these can be physically sensed easily, but the exact value of the sensed cannot be determined by human. There will be a lot of error in judged value and exact value. So instead of human sensing them and judging the exact value there are physical instruments which can provide lot more accurate value of sensed item than human, which are called SENSORS. There are lot of different sensors for sensing different things and one of prominent one is temperature sensor. Temperature sensor plays an important role in many applications. For example, maintaining a specific temperature is essential for equipment used to fabricate medical drugs, heat liquids or clean other equipment. For application like these, the accuracy of detection can be critical. The work done in this Thesis shows how to maintain the accuracy of temperature sensor. Temperature sensor used here is a Wheatstone bridge circuit consisting of two resistors and two thermistors. Mismatch between the resistors or thermistors will lead to incorrect detection of value, which is called OFFSET, therefore to maintain the accuracy the mismatch has to be minimized or removed. One of the Technique to minimize the offset and results pertaining to it has been displayed in this Thesis. Technique described in this Thesis consist of first sensing the difference between resistors value, one being the reference resistor and other the on-chip resistor used in temperature sensing, second amplifying the difference of resistor value using OPAMP, third sending the amplified signal to single ended SAR ADC, which gives digital bits as output. And according to the digital output changing resistor value using resistor switching method. Thus then this resistor will be used in wheat stone bridge temperature sensing. The work proposed here can increase or decrease on-chip resistor value depending on reference resistor. The wheat stone bridge Resistor can be changed by plus minus 5K ohms with respect to reference resistor. This is a onetime calibration technique used before start of sensing temperature. After the resistor have been calibrated, these resistors are used in wheat stone bridge along with thermistor to sense temperature and the differential output obtained through wheat stone is passed on to the dual ended SAR ADC, which gives digital representation of temperature sensed
    corecore