138,563 research outputs found

    A Design for a Lithium-Ion Battery Pack Monitoring System Based on NB-IoT-ZigBee

    Get PDF
    With environmental issues arising from the excessive use of fossil fuels, clean energy has gained widespread attention, particularly the application of lithium-ion batteries. Lithium-ion batteries are integrated into various industrial products, which necessitates higher safety requirements. Narrowband Internet of Things (NB-IoT) is an LPWA (Low Power Wide Area Network) technology that provides IoT devices with low-power, low-cost, long-endurance, and wide-coverage wireless connectivity. This study addresses the shortcomings of existing lithium-ion battery pack detection systems and proposes a lithium-ion battery monitoring system based on NB-IoT-ZigBee technology. The system operates in a master-slave mode, with the subordinate module collecting and fusing multi-source sensor data, while the master control module uploads the data to local monitoring centers and cloud platforms via TCP and NB-IoT. Experimental validation demonstrates that the design functions effectively, accomplishing the monitoring and protection of lithium-ion battery packs in energy storage power stations

    A Low-Cost IoT Based Buildings Management System (BMS) Using Arduino Mega 2560 And Raspberry Pi 4 For Smart Monitoring and Automation

    Get PDF
    This work presents an internet of things (IoT) based building management system (BMS) for monitoring, control, and energy management in buildings to provide an efficient way of energy utilization. Existing systems mainly provide monitoring of different parameters with limited controlling/automation functions. Existing solutions also do not provide automatic decision-making, advanced safety management, and resource tracking. However, the proposed system provides a comprehensive way of monitoring, controlling, and automatic decision making regarding different environmental and electrical parameters in buildings, i.e., temperature, humidity, dust, volt, etc., by using a low-cost wireless sensor network (WSN). The architecture of the proposed system consists of five layers and uses analog sensors which are connected to Arduino Mega 2560 microcontrollers for data collecting, NodeMCUs ESP8266 for wireless communication, Raspberry Pi4 microcomputers for decision making, and nod-RED dashboard which runs locally on a Raspberry Pi 4to provide a friendly end-user interface. The system also uses the Message Queuing Telemetry Transport (MQTT) communication protocol through Wi-Fi and completely relies on the local devices in the architecture and does not need cloud computing services. The proposed system provides two different kinds of automation, i.e., safety automation for the safety of different devices with advanced features, and energy automation. The proposed system is also able to provide humidity control inside a room and to track and count the available resources in any facility. The proposed system is low cost, scalable, and can be used in any building. Simulation results show that the proposed system is highly efficient

    IoT-Based Alternating Current Electrical Parameters Monitoring System

    Get PDF
    Energy monitors are indispensable for achieving efficient electrical grids and even more so in the age of the Internet of Things (IoT), where electrical system data are monitored from anywhere in the world. This paper presents the development of a two-channel electrical parameter-monitoring system based on the M5 Stack Core2 kit. The acquisition of variables is done through PZEM 004T V3.0 sensors, and the data are sent to the ThingSpeak cloud database. Local readings are done through the LCD, and data re stored on a micro SD card. Remote monitoring is done through two applications, namely a web application and a mobile application, each designed for different purposes. To validate this proposal, a commercial device with IoT features (Gen 2 Vue Energy Monitor) is used, comparing the active power and active energy readings recorded continuously for 7 days. The results indicate an accuracy of up to 1.95% in power and 0.81% in energy, obtaining a low-cost compact product with multiple features

    Landslide monitoring using mobile device and cloud-based photogrammetry

    Get PDF
    PhD ThesisLandslides are one of the most commonly occurring natural disasters that can cause a serious threat to human life and society, in addition to significant economic loss. Investigation and monitoring of landslides are important tasks in geotechnical engineering in order to mitigate the hazards created by such phenomena. However, current geomatics approaches used for precise landslide monitoring are largely inappropriate for initial assessment by an engineer over small areas due to the labourintensive and costly methods often adopted. Therefore, the development of a costeffective landslide monitoring system for real-time on-site investigation is essential to aid initial geotechnical interpretation and assessment. In this research, close-range photogrammetric techniques using imagery from a mobile device camera (e.g. a modern smartphone) were investigated as a low-cost, non-contact monitoring approach to on-site landslide investigation. The developed system was implemented on a mobile platform with cloud computing technology to enable the potential for real-time processing. The system comprised the front-end service of a mobile application controlled by the operator and a back-end service employed for photogrammetric measurement and landslide monitoring analysis. In terms of the backend service, Structure-from-Motion (SfM) photogrammetry was implemented to provide fully-automated processing to offer user-friendliness to non-experts. This was integrated with developed functions that were used to enhance the processing performance and deliver appropriate photogrammetric results for assessing landslide deformations. In order to implement this system with a real-time response, the cloud-based system required data transfer using Internet services via a modern 4G/5G network. Furthermore, the relationship between the number of images and image size was investigated to optimize data processing. The potential of the developed system for monitoring landslides was investigated at two different real-world UK sites, comprising a natural earth-flow landslide and coastal cliff erosion. These investigations demonstrated that the cloud-based photogrammetric measurement system was capable of providing three-dimensional results to subdecimeter-level accuracy. The results of the initial assessments for on-site investigation could be effectively presented on the mobile device through visualisation and/or statistical quantification of the landslide changes at a local-scale.Royal Thai Government and Naresuan University for the scholarship and financial suppor

    A Cooperative and Hybrid Network Intrusion Detection Framework in Cloud Computing Based on Snort and Optimized Back Propagation Neural Network

    Get PDF
    AbstractCloud computing provides a framework for supporting end users easily attaching powerful services and applications through Internet. To give secure and reliable services in cloud computing environment is an important issue. Providing security requires more than user authentication with passwords or digital certificates and confidentiality in data transmission, because it is vulnerable and prone to network intrusions that affect confidentiality, availability and integrity of Cloud resources and offered services. To detect DoS attack and other network level malicious activities in Cloud, use of only traditional firewall is not an efficient solution. In this paper, we propose a cooperative and hybrid network intrusion detection system (CH-NIDS) to detect network attacks in the Cloud environment by monitoring network traffic, while maintaining performance and service quality. In our NIDS framework, we use Snort as a signature based detection to detect known attacks, while for detecting network anomaly, we use Back-Propagation Neural network (BPN). By applying snort prior to the BPN classifier, BPN has to detect only unknown attacks. So, detection time is reduced. To solve the problem of slow convergence of BPN and being easy to fall into local optimum, we propose to optimize the parameters of it by using an optimization algorithm in order to ensure high detection rate, high accuracy, low false positives and low false negatives with affordable computational cost. In addition, in this framework, the IDSs operate in cooperative way to oppose the DoS and DDoS attacks by sharing alerts stored in central log. In this way, unknown attacks that were detected by any IDS can easily be detected by others IDSs. This also helps to reduce computational cost for detecting intrusions at others IDS, and improve detection rate in overall the Cloud environment

    Advanced observation and telemetry heart system utilizing wearable ECG device and a Cloud platform

    Get PDF
    Short lived chest pain episodes of post PCI patients represent the most common clinical scenario treated in the Accidents and Emergency Room. Continuous ECG monitoring could substantially diminish such hospital admissions and related ambulance calls. Delivering community based, easy-To-handle, easy to wear, real time electrocardiography systems is still a quest, despite the existence of electronic electrocardiography systems for several decades. The PATRIOT system serves this challenge via a 12-channel, easy to wear, easy to carry, mobile linked, miniaturized automatic ECG device and a Cloud platform. The system may deliver high quality electrocardiograms of a patient to medical personnel either on the spot or remotely both in a synchronous or asynchronous mode, enhancing autonomy, mobility, quality of life and safety of recently treated coronary artery disease patients
    corecore