586 research outputs found

    Fabrication of multilayers electrodes and electrolyte via screen printing for metal supported solid oxide fuel cell

    Get PDF
    Metal-Supported Solid Oxide Fuel Cell (MS-SOFC) were produced using a manual screen-printing method on 430 stainless steel (SS430) substrates. Each of MS-SOFC sample was fabricated by using manual screen printing with two different mesh screens which are 305 and 355. The fabrication of NiO-GDC composite anode powder was done by mixing 60wt% NiO and 40wt% GDC. Meanwhile, 50wt% LSCF and 50wt% GDC was mixed to produce LSCF-GDC composite cathode powder. NiO�GDC, LSCF-GDC and GDC powders went through calcination in the furnace at 950℃ for 2 hours. MS-SOFC samples with a different number of repetitions during the screen-printing process were sintered at 900℃ for 90 minutes. In this study, the phase analysis was conducted via X-Ray Diffraction (XRD) method for commercial powder and composite powders. A good XRD pattern was obtained without the presence of any secondary peak in composite anode and cathode powder. The XRD data obtained were analysed to obtain the lattice structure and crystallise size for all the commercial and composite powder. 24.59 nm, 24.38 nm, 13.34 nm are the average crystallise size for NiO, GDC and LSCF, respectively. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) were used to identify the thickness and distribution of elements on each MS-SOFC layer. As a result, the SOFC component layers fabricated by screen printed using 305-mesh screen at 10 times number of printings was selected as the ideal MS-SOFC sample. This is because the thickness of the layers obtained is lower compared to layers from mesh screens 305 and 355 at 15 and 20 times the number of printings which is 11.8 μm, 11.9 μm and 18.2 μm for anode, electrolyte and cathode, respectively. Thin electrode layer will produce low polarization resistance and can improve the SOFC performance itself

    Design and Validation of Hardware-in-the-Loop Testbed for Proximity Operations Payloads

    Get PDF
    The research presented here is a new testbed design for CubeSat and payload testing and development. This research demonstrates a low-cost, hardware-in-the-loop testing apparatus for use with university CubeSat programs for testing throughout the different levels of the development process. The average university CubeSat program undergoes very little hardware-in-the-loop testing. Most of the focus is the targeted towards performance testing and environmental testing which occur after completion the development process. This research shows that, for minimal schedule and cost impact, testing can occur early in the development process. The testbed presented here demonstrates suitable accuracy to be used for advanced mission testing and regularly throughout the process until completion. The testbed maintains a low-cost, modular design, and ease of integration into new and existing programs. In addition, some modifications and upgraders are suggested to further increase the performance of the testbed. The success of the testbed can be seen through the implementation of actual satellite telemetry with rendezvous and docking missions, the testbed performance, and the results of that experiment

    Tools and Control Experiences using TCLab Arduino Kit

    Get PDF
    In this project, control experiments are made using a TCLab arduino kit using a wide range of traditional methods, P, PI, PD, PID and feedforward. Those experiments are conducted in various software environments ranging from Python, Matlab and Octave. Comparisons are made regarding the efficiency and cost of both the software applications used and the control methods as well. The experiments are documented in a way that facilitates their reproduction by the reader

    Proceedings of the 5th Baltic Mechatronics Symposium - Espoo April 17, 2020

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. Due to Coronavirus COVID-19 the symposium was organized as a virtual conference. The content of the proceedings1. Monitoring Cleanliness of Public Transportation with Computer Vision2. Device for Bending and Cutting Coaxial Wires for Cryostat in Quantum Computing3. Inertial Measurement Method and Application for Bowling Performance Metrics4. Mechatronics Escape Room5. Hardware-In-the-Loop Test Setup for Tuning Semi-Active Hydraulic Suspension Systems6. Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy7. Simulation and Testing of Temperature Behavior in Flat Type Linear Motor Carrier8. Powder Removal Device for Metal Additive Manufacturing9. Self-Leveling Spreader Beam for Adjusting the Orientation of an Overhead Crane Loa

    Cyber-Physical Codesign of Wireless Structural Control System

    Get PDF
    Structural control systems play a critical role in protecting civil infrastructure from natural hazards such as earthquakes and extreme winds. Utilizing wireless sensors for sensing, communication and control, wireless structural control systems provide an attractive alternative for structural vibration mitigation. Although wireless control systems have advantages of flexible installation, rapid deployment and low maintenance cost, there are unique challenges associated with them, such as wireless network induced time delay and potential data loss. These challenges need to be considered jointly from both the network (cyber) and control (physical) perspectives. This research aims to develop a framework facilitating cyber-physical codesign of wireless control system. The challenges of wireless structural control are addressed through: (1) a numerical simulation tool to realistically model the complexities of wireless structural control systems, (2) a codesign approach for designing wireless control system, (3) a sensor platform to experimentally evaluate wireless control performance, (4) an estimation method to compensate for the data loss and sensor failure, and (5) a framework for fault tolerance study of wireless control system withreal-time hybrid simulation. The results of this work not only provide codesign tools to evaluate and validate wireless control design, but also the codesign strategies to implement on real-world structures for wireless structural control

    Microcontroller based implementation of a fuzzy knowledge based controller

    Get PDF
    In recent times, fuzzy logic has been used and applied in wide areas, starting from consumer electronics like washing machines to robotics to many industrial control systems like temperature controllers for process plants. Our work describes an implementation of fuzzy logic control algorithm using inexpensive hardware to control the temperature of a system, without any special software tools. A cooling system generally involves complex and time-variant plant, with delays and non- linearity, and often with poorly defined dynamics. Fuzzy logic control algorithm solves problems that are difficult to address with traditional control techniques, and at the same time provides us with a response better than conventional PID controllers. In the present work, this has been proved with the help of MATLAB simulations. Thereafter the program for the fuzzy control algorithm is written in C++ language and implemented through ARDUINO UNO tool kit. Further system functional is tested and the performance is evaluated taking several set-points and disturbances into account. The performance of the hardware is compared with that of MATLAB simulations of the same case and the results are verified

    Saturable absorption measurement of platinum as saturable absorber by using twin detector method based on mode-locked fiber laser

    Get PDF
    This paper illustrates the absorption measurement of Pt as saturable absorber (SA) by using mode-locked fiber laser system. The SA is fabricated by depositing 10 nm of Pt on the fiber ferrules using sputtering method. The absorption measurement of Pt is characterised by employing a balanced twin detector method based on mode-locked fiber laser with central wavelength of 1532.25 nm, repetition rate of 2.833 MHz and pulse duration of 34.3 ns. The Pt-SA produce modulation depth of 21.9% and saturation intensity of 21.6 MW cm-2

    Open source SCADA systems for small renewable power generation

    Get PDF
    Low cost monitoring and control is essential for small renewable power systems. While large renewable power systems can use existing commercial technology for monitoring and control, that is not cost-effective for small renewable generation. Such small assets require cost-effective, flexible, secure, and reliable real-time coordinated data monitoring and control systems. Supervisory control and data acquisition (SCADA) is the perfect technology for this task. The available commercial SCADA solutions are mostly pricey and economically unjustifiable for smaller applications. They also pose interoperability issues with the existing components which are often from multiple vendors. Therefore, an open source SCADA system represents the most flexible and the most cost-effective SCADA solution. This thesis has been done in two phases. The first phase demonstrates the design and dynamic simulation of a small hybrid power system with a renewable power generation system as a case study. In the second phase, after an extensive study of the proven commercial SCADA solutions and some open source SCADA packages, three different secure, reliable, low-cost open source SCADA options are developed using the most recent SCADA architecture, the Internet of Things. The implemented prototypes of the three open source SCADA systems were tested extensively with a small renewable power system (a solar PV system). The results show that the developed open source SCADA systems perform optimally and accurately, and could serve as viable options for smaller applications such as renewable generation that cannot afford commercial SCADA solutions
    corecore