1,828 research outputs found

    A case study for NoC based homogeneous MPSoC architectures

    Get PDF
    The many-core design paradigm requires flexible and modular hardware and software components to provide the required scalability to next-generation on-chip multiprocessor architectures. A multidisciplinary approach is necessary to consider all the interactions between the different components of the design. In this paper, a complete design methodology that tackles at once the aspects of system level modeling, hardware architecture, and programming model has been successfully used for the implementation of a multiprocessor network-on-chip (NoC)-based system, the NoCRay graphic accelerator. The design, based on 16 processors, after prototyping with field-programmable gate array (FPGA), has been laid out in 90-nm technology. Post-layout results show very low power, area, as well as 500 MHz of clock frequency. Results show that an array of small and simple processors outperform a single high-end general purpose processo

    Using Partial Reconfiguration for SoC Design and Implementation

    Get PDF
    Most reconfigurable systems rely on FPGA technology. Among these ones, those which permit dynamic and partial reconfiguration, offer added benefits in flexibility, in-field device upgrade, improved design and manufacturing time, and even, in some cases, power consumption reductions. However, dynamic reconfiguration is a complex task, and the real benefits of its use in real applications have been often questioned. This paper presents an overview of the partial reconfiguration technique application, along with four original applications. The main goal of these applications is to test several architectures with different flexibility and, to search for the partial reconfiguration "killing application", that is, the application that better demonstrates the benefits of today reconfigurable systems based on commercial FPGAs. Therefore, the presented applications are rather a proof of concept, than fully operative and closed systems. First, a brief introduction to the partial reconfigurable systems application topic has been included. After that, the descriptions of the created reconfigurable systems are presented: first, an on-chip communications emulation framework, second, an on chip debugging system, third, a wireless sensor network reconfigurable node and finally, a remote reconfigurable client-server device. Each application is described in a separate section of the paper along with some test and results. General conclusions are included at the end of the pape

    Open-TEE - An Open Virtual Trusted Execution Environment

    Full text link
    Hardware-based Trusted Execution Environments (TEEs) are widely deployed in mobile devices. Yet their use has been limited primarily to applications developed by the device vendors. Recent standardization of TEE interfaces by GlobalPlatform (GP) promises to partially address this problem by enabling GP-compliant trusted applications to run on TEEs from different vendors. Nevertheless ordinary developers wishing to develop trusted applications face significant challenges. Access to hardware TEE interfaces are difficult to obtain without support from vendors. Tools and software needed to develop and debug trusted applications may be expensive or non-existent. In this paper, we describe Open-TEE, a virtual, hardware-independent TEE implemented in software. Open-TEE conforms to GP specifications. It allows developers to develop and debug trusted applications with the same tools they use for developing software in general. Once a trusted application is fully debugged, it can be compiled for any actual hardware TEE. Through performance measurements and a user study we demonstrate that Open-TEE is efficient and easy to use. We have made Open- TEE freely available as open source.Comment: Author's version of article to appear in 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2015, Helsinki, Finland, August 20-22, 201

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC
    • …
    corecore