9,189 research outputs found

    Wearable flexible lightweight modular RFID tag with integrated energy harvester

    Get PDF
    A novel wearable radio frequency identification (RFID) tag with sensing, processing, and decision-taking capability is presented for operation in the 2.45-GHz RFID superhigh frequency (SHF) band. The tag is powered by an integrated light harvester, with a flexible battery serving as an energy buffer. The proposed active tag features excellent wearability, very high read range, enhanced functionality, flexible interfacing with diverse low-power sensors, and extended system autonomy through an innovative holistic microwave system design paradigm that takes antenna design into consideration from the very early stages. Specifically, a dedicated textile shorted circular patch antenna with monopolar radiation pattern is designed and optimized for highly efficient and stable operation within the frequency band of operation. In this process, the textile antenna's functionality is augmented by reusing its surface as an integration platform for light-energy-harvesting, sensing, processing, and transceiver hardware, without sacrificing antenna performance or the wearer's comfort. The RFID tag is validated by measuring its stand-alone and on-body characteristics in free-space conditions. Moreover, measurements in a real-world scenario demonstrate an indoor read range up to 23 m in nonline-of-sight indoor propagation conditions, enabling interrogation by a reader situated in another room. In addition, the RFID platform only consumes 168.3 mu W, when sensing and processing are performed every 60 s

    Architectural Model and Modified Long Range Wide Area Network (LoRaWAN) for Boat Traffic Monitoring and Transport Detection Systems in Shallow Waters

    Get PDF
    Monitoring the movement of boats in shallow waters requires a real-time monitoring system. However, for small-size wooden boats, they are still monitored manually, and data is unavailable in real time, which makes it difficult to effectively monitor them. The integration of IoT platforms with the boat monitoring system is a challenging task, especially in the transport system. This paper has the objective of developing an architectural model of a modified LoRaWAN-based boat monitoring system that is connected to a GPS-based mobile device and base station. The proposed architectural model is an integration of Bluetooth Low Energy (BLE) and LoRaWAN networks, which are also tested in real time to solve the boat traffic monitoring issues. The field tests with parameters of signal transmission, location coordinates, and position of the boats are also presented. The analysis result shows the proposed model is suitable for waters with high noise levels, especially in shallow water and delta rivers. The signal noise can be reduced by extracting the real-time data. In addition, signal interference can be minimized. The performance of this system is also compared to the reference system in real conditions, which shows an adequate correlation result. This proof of concept forms an important basis for deploying it for large-scale applications and commercialization capabilities. Doi: 10.28991/ESJ-2023-07-04-011 Full Text: PD

    i-Light - Intelligent Luminaire Based Platform for Home Monitoring and Assisted Living

    Get PDF
    [EN] We present i-Light, a cyber-physical platform that aims to help older adults to live safely within their own homes. The system is the result of an international research project funded by the European Union and is comprised of a custom developed wireless sensor network together with software services that provide continuous monitoring, reporting and real-time alerting capabilities. The principal innovation proposed within the project regards implementation of the hardware components in the form of intelligent luminaires with inbuilt sensing and communication capabilities. Custom luminaires provide indoor localisation and environment sensing, are cost-effective and are designed to replace the lighting infrastructure of the deployment location without prior mapping or fingerprinting. We evaluate the system within a home and show that it achieves localisation accuracy sufficient for room-level detection. We present the communication infrastructure, and detail how the software services can be configured and used for visualisation, reporting and real-time alerting.This work was funded by a grant of the Romanian National Authority for Scientific Research and Innovation, CCCDI-UEFISCDI, project number 46E/2015, i-Light-A pervasive home monitoring system based on intelligent luminaires.Marin, I.; Vasilateanu, A.; Molnar, A.; Bocicor, MI.; Cuesta Frau, D.; Molina Picó, A.; Goga, N. (2018). i-Light - Intelligent Luminaire Based Platform for Home Monitoring and Assisted Living. Electronics. 7(10):1-24. https://doi.org/10.3390/electronics7100220S124710World Report on Ageing and Health http://apps.who.int/iris/bitstream/10665/186463/1/9789240694811_eng.pdf?ua=1ECP Makes Switching to eMAR Easy http://extendedcarepro.com/products/Carevium Assisted Living Software http://www.carevium.com/carevium-assisted-living-software/Yardi EHR http://www.yardi.com/products/ehr-senior-care/Yardi eMAR http://www.yardi.com/products/emar/Botia, J. A., Villa, A., & Palma, J. (2012). Ambient Assisted Living system for in-home monitoring of healthy independent elders. Expert Systems with Applications, 39(9), 8136-8148. doi:10.1016/j.eswa.2012.01.153Lopez-Guede, J. M., Moreno-Fernandez-de-Leceta, A., Martinez-Garcia, A., & Graña, M. (2015). Lynx: Automatic Elderly Behavior Prediction in Home Telecare. BioMed Research International, 2015, 1-18. doi:10.1155/2015/201939Luca, S., Karsmakers, P., Cuppens, K., Croonenborghs, T., Van de Vel, A., Ceulemans, B., … Vanrumste, B. (2014). Detecting rare events using extreme value statistics applied to epileptic convulsions in children. Artificial Intelligence in Medicine, 60(2), 89-96. doi:10.1016/j.artmed.2013.11.007Better Health Assessments Every Day, for Better Everyday Living http://healthsense.com/Home Telehealth https://www.usa.philips.com/healthcare/solutions/enterprise-telehealth/home-telehealthThe Carelink Network http://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/managing-patients/information-systems/carelink-network.htmlHaigh, P. A., Bausi, F., Ghassemlooy, Z., Papakonstantinou, I., Le Minh, H., Fléchon, C., & Cacialli, F. (2014). Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Optics Express, 22(3), 2830. doi:10.1364/oe.22.002830Indoor Positioning System http://www.gelighting.com/LightingWeb/na/solutions/control-systems/indoor-positioning-system.jspIndoor and Outdoor Lighting Solutions http://www.acuitybrands.com/solutions/featured-spacesHuang, C.-N., & Chan, C.-T. (2011). ZigBee-based indoor location system by k-nearest neighbor algorithm with weighted RSSI. Procedia Computer Science, 5, 58-65. doi:10.1016/j.procs.2011.07.010Charlon, Y., Fourty, N., & Campo, E. (2013). A Telemetry System Embedded in Clothes for Indoor Localization and Elderly Health Monitoring. Sensors, 13(9), 11728-11749. doi:10.3390/s130911728Patient/Elderly Activity Monitoring Using WiFi-Based Indoor Localization https://wiki.cc.gatech.edu/designcomp/images/3/3d/HHH_Report.pdfReal Time Location System http://zonith.com/products/rtls/Accurate Positioning https://www.pozyx.io/yooBee System Overview https://www.blooloc.com/over-yoobeeThe Top Indoor Location Engine for Smart Apps https://senion.com/Locating People, Way-Finding, and Attendance Tracking https://estimote.com/products/Indoor Navigation, Indoor Positioning, Indoor Analytics and Indoor Tracking https://www.infsoft.com/Lighting Reimagined https://www.lifx.com/Tabu. Lumen. Simply Brighter http://www.lumenbulb.net/Philips Hue http://www2.meethue.com/en-usElgato Avea https://www.elgato.com/en/aveaiLumi—The World’s Most Intelligent Light Bulbs hhttps://www.indiegogo.com/projects/ilumi-the-world-s-most-intelligent-light-bulbs--5#/Bluegiga BLE112 Bluetooth® Smart Module http://www.silabs.com/products/wireless/bluetooth/bluetooth-low-energy-modules/ble112-bluetooth-smart-moduleISO/IEEE 11073 https://www.iso.org/standard/67821.htmlDescription https://www.diodes.com/assets/Datasheets/ZXLD1366.pdfDigital Humidity Sensor SHT2x https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/Photo IC Type High Sensitive Light Sensor https://industrial.panasonic.com/cdbs/www-data/pdf/ADD8000/ADD8000CE2.pdfWSP2110 VOC Gas Sensor http://www.winsen-sensor.com/products/flat-surfaced-gas-sensor/wsp2110.htmlLow Power-Consumption CO2 Sensor http://www.winsen-sensor.com/d/files/PDF/Solid%20Electrolyte%20CO2%20Sensor/MG812%20CO2%20Manual%20V1.1.pdfGP2Y1010AU0F Compact Optical Dust Sensor http://www.sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y1010au_e.pdfEKMC (VZ) Series http://www3.panasonic.biz/ac/e/control/sensor/human/vz/index.jspSensors for Automotive & Industrial Applications: Grid-EYE Infrared Array Sensor https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/grid-eye-infrared-array-sensorGeneric Attributes https://www.bluetooth.com/specifications/gattDeveloping NFC Applications. (2011). Near Field Communication, 151-239. doi:10.1002/9781119965794.ch5Matsuoka, H., Wang, J., Jing, L., Zhou, Y., Wu, Y., & Cheng, Z. (2014). Development of a control system for home appliances based on BLE technique. 2014 IEEE International Symposium on Independent Computing (ISIC). doi:10.1109/indcomp.2014.7011751Standard ECMA-404. The JSON Data Interchange Format http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdfThe EU General Data Protection Regulation http://www.eugdpr.org/Tews, E., & Beck, M. (2009). Practical attacks against WEP and WPA. Proceedings of the second ACM conference on Wireless network security - WiSec ’09. doi:10.1145/1514274.1514286Farooq, U., & Aslam, M. F. (2017). Comparative analysis of different AES implementation techniques for efficient resource usage and better performance of an FPGA. Journal of King Saud University - Computer and Information Sciences, 29(3), 295-302. doi:10.1016/j.jksuci.2016.01.004Luo, X.-L., Liao, L.-Z., & Wah Tam, H. (2007). Convergence analysis of the Levenberg–Marquardt method. Optimization Methods and Software, 22(4), 659-678. doi:10.1080/10556780601079233Wammu https://wammu.eu/gammu

    Practical Experiences of a Smart Livestock Location Monitoring System leveraging GNSS, LoRaWAN and Cloud Services.

    Get PDF
    Livestock farming is, in most cases in Europe, unsupervised, thus making it difficult to ensure adequate control of the position of the animals for the improvement of animal welfare. In addition, the geographical areas involved in livestock grazing usually have difficult access with harsh orography and lack of communications infrastructure, thus the need to provide a low-power livestock localization and monitoring system is of paramount importance, which is crucial not for a sustainable agriculture, but also for the protection of native breeds and meats thanks to their controlled supervision. In this context, this work presents an Internet of things (IoT)-based system integrating low-power wide area (LPWA) technology, cloud and virtualization services to provide real-time livestock location monitoring. Taking into account the constraints coming from the environment in terms of energy supply and network connectivity, our proposed system is based on a wearable device equipped with inertial sensors, Global Positioning System (GPS) receiver and LoRaWAN transceiver, which can provide a satisfactory compromise between performance, cost and energy consumption. At first, this article provides the state-of-the-art localization techniques and technologies applied to smart livestock. Then, we proceed to provide the hardware and firmware co-design to achieve very low energy consumption, thus providing a significant positive impact to the battery life. The proposed platform has been evaluated in a pilot test in the Northern part of Italy, evaluating different configurations in terms of sampling period, experimental duration and number of devices. The results are analyzed and discussed for packe delivery ratio, energy consumption, localization accuracy, battery discharge measurement and delay

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    Localization System Supporting People with Cognitive Impairment and Their Caregivers

    Get PDF
    Localization systems are an important componentof Ambient and Assisted Living platforms supporting personswith cognitive impairments. The paper presents a positioningsystem being a part of the platform developed within the IONISEuropean project. The system’s main function is providing theplatform with data on user mobility and localization, whichwould be used to analyze his/her behavior and detect dementiawandering symptoms. An additional function of the system islocalization of items, which are frequently misplaced by dementiasufferers.The paper includes a brief description of system’s architecture,design of anchor nodes and tags and exchange of data betweendevices. both localization algorithms for user and item positioningare also presented. Exemplary results illustrating the system’scapabilities are also included
    • …
    corecore