999 research outputs found

    MIMO pre-equalization and DFE for high-speed off-chip communication

    Get PDF
    In this contribution, we present a multiple-input multiple-output (MIMO) transceiver scheme for high-speed chip-to-chip communication over low-cost electrical interconnects. Linear MIMO pre-equalization at the transmitter is combined with decision feedback equalization (DFE) at the receiver to counteract the adverse effect of inter symbol interference (ISI) and crosstalk (XT). Considering an energy constraint at the transmit side, we derive elegant closed-form expressions for the equalization filters under a minimum mean square error (MMSE) criterion. Numerical analysis shows that the combination of linear MIMO pre-equalization and MIMO DFE allows to significantly improve the reliability of future high-speed off-chip communication

    A New Transcoding Scheme for Scalable Video Coding to H.264/AVC

    Get PDF
    Requests from various video terminals push video servers to equip with scalability for video contents distribution in different ways. Scalable Video Coding (SVC) as the extension of H.264/AVC standard can provide the scalability for video servers by encoding videos into one base layer and several enhancement layers. To enable mobile devices without scalability receive videos at their best extent, converting bit-streams from SVC into H.264/AVC becomes the key technique. Bit-stream rewriting is the simplest way without quality loss. However, rewriting is not a real transcoding scheme, since it needs to modify SVC encoders. This paper proposes a novel transcoding approach to support spatial scalability by minimizing the distortions generated from re-encoding process. The proposed scheme keeps the input bit-streams’ information at maximum and adopts the hybrid upsampling method to do residue scaling, which can reduce the transcoding distortion into minimization. Experimental results demonstrate that the loss of the rate-distortion (RD) performance of the proposed transcoding scheme is better than Full Decoding Re-encoding (FDR) which can get the highest video quality in general sense, by achieving up to 0.9 dB Y-PSNR gain while saving 95%~97% processing time

    A New Transcoding Scheme for Scalable Video Coding to H.264/AVC

    Full text link
    • …
    corecore