113 research outputs found

    Genetically Optimized Pre coders Transceiver Design for Double STBC System

    Get PDF
    Wireless communications depends on multiple-input-multiple-output (MIMO) techniques for high data rates. Feedback of channel information can be used in pre-coding to use the strongest channel mode and improve MIMO performance. The DPC system is interference free on multi-user or multi-antenna. The STBC transceiver can provide the transmit diversity. Due to the benefits about the STBC and DPC system, we propose a new scheme called STBC-DPC system. The transceiver design involves the following procedures. First, the ordering QR decomposition of channel matrix and the maximum likelihood (ML) one-dimensional searching algorithm are proposed to acquire a reliable performance. Next, the channel on/off assignment using water filling algorithm is proposed to overcome the deep fading channel problem. Finally, the STBC-DPC system with the modulus operation to limit the transmit signal level, i.e., Tomlinson-Harashima precoding (THP) scheme, is proposed to retain low peak-to-average power ratio (PAPR) performance. Simulation results confirm that the proposed STBC-DPC/THP with water filling ML algorithm can provide the low PAPR and excellent bit error rate (BER) performances

    MIMO Systems

    Get PDF
    In recent years, it was realized that the MIMO communication systems seems to be inevitable in accelerated evolution of high data rates applications due to their potential to dramatically increase the spectral efficiency and simultaneously sending individual information to the corresponding users in wireless systems. This book, intends to provide highlights of the current research topics in the field of MIMO system, to offer a snapshot of the recent advances and major issues faced today by the researchers in the MIMO related areas. The book is written by specialists working in universities and research centers all over the world to cover the fundamental principles and main advanced topics on high data rates wireless communications systems over MIMO channels. Moreover, the book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Space-time-frequency block codes for MIMO-OFDM in next generation wireless systems

    Get PDF
    In this thesis the use of space-frequency block codes (SFBC) and space-time-frequency block codes (STFBC) in wireless systems are investigated. A variety of SFBC and STFBC schemes are proposed for particular propagation scenarios and system settings where each has its own advantages and disadvantages. The objective is to pro-pose coding strategies with improved flexibility, feasibility and spectral efficiency,and reduce the decoding complexity in an MIMO-OFDM system. Firstly an efficient SFBC with improved system performance is proposed for MIMO-OFDM systems. The proposed SFBC incorporates the concept of matched rotation precoding (MRP) to achieve full transmit diversity and optimal system performance foran arbitrary numberoftransmitantennas,subcarrierinterval andsubcarriergrouping. The MRP is proposed to exploit the inherent rotation and repetition properties of SFBC, arising from the channel power delay profile, in order to fully capture both space and frequency diversity of SFBC in a MIMO-OFDM system. It is able to relax restrictions on subcarrier interval and subcarrier grouping, making it ideal for adaptive/time-varying systems or multiuser systems. The SFBC without an optimization process is unstable in terms of achievable system performance and diversity order, and also risks diversity loss within a specific propagation scenario. Such loss or risk is prominent while wireless propagation channel has a limited number of dominant paths, e.g. relatively close to transmitters or relatively flat topography. Hence in orderto improve the feasibility of SFBC in dynamic scenarios, the lower bound of the coding gain for MRP is derived. The SFBC with MRP is proposed for more practical scenarios when only partial channel power delay profile information is known at the transmit end, for example the wireless channel has dominant propagation paths. The proposed rate one MRP has a relatively simple optimization process that can be transformed into an explicit diagram and hence an optimal result can be derived intuitively without calculations. Next, a multi-rate transmission strategy is proposed for both SFBCand STFBC to balance the system performance and transmission rate. A variety of rate adaptive coding matrices are obtained by a simple truncation of the coding matrix, or by parameter optimization for coding matrices for a given transmission rate and constellation. Pro-posed strategy can easily and gradually adjust the achievable diversity order. As a result it is capable of achieving a relatively smooth balance between system performance and transmission rate in both SFBC and STFBC, without a significant change of coding structure or constellation size. Such tradeoff would be useful to maintain stable Quality of Service (QoS) for users by providing more scalability of achievable performance in a time-varying channel. Finally the decoding procedure of space-time block code (STBC), SFBCand STFBC is discussed. The decoding of all existing STBC/SFBC/STFBC is unified at first, in order to show a concise procedure and make fair comparisons. Then maximum likelihood decoding (MLD) and arbitrary sphere decoding (SD) can be adopted. To reduce the complexity of decoding further, a novel decoding method called compensation de-coding (CD) is presented for a given space-time-frequency coding scheme. By taking advantage of the simplicity of zero-forcing decoding (ZFD) we are able to calculate a compensation vector for the output of ZFD. After modification by utilizing the com-pensation vector, the BER performance can be improved significantly. The decoding procedure is relatively simple and is independent of the constellation size. The per-formance of the proposed decoding method is close to maximum-likelihood decoding for low to medium SNR. A low complexity detection scheme, classifier based decoding (CBD), is further proposed for MIMO systems incorporating spatial multiplexing. The CBD is a hybrid of an equalizer-based technique and an algorithmic search stage. Based on an error matrix and its probability density functions for different classes of error, a particular search region is selected for the algorithmic stage. As the probability of occurrence of error classes with larger search regions is small, overall complexity of the proposed technique remains low, whilst providing a significant improvement in the bit error rate performance

    Improved Spatial Modulation Techniques for Wireless Communications

    Get PDF
    Transmission and reception methods with multiple antennas have been demonstrated to be very useful in providing high data rates and improving reliability in wireless communications. In particular, spatial modulation (SM) has recently emerged as an attractive transmission method for multiple-antennas systems due to its better energy efficiency and lower system complexity. This thesis is concerned with developing transmission techniques to improve the spectral efficiency of SM where antenna/subcarrier index involves in conveying information bits. In the first part of the thesis, new transmission techniques are developed for SM over frequency-flat fading channels. The first proposed scheme is based on a high-rate space-time block code instead of using the classical Alamouti STBC, which helps to increase the spectral efficiency and achieve a transmit diversity order of two. A simplified maximum likelihood detection is also developed for this proposed scheme. Analysis of coding gains and simulation results demonstrate that the proposed scheme outperforms previously-proposed SM schemes at high data transmission rates. Then, a new space-shift keying (SSK) modulation scheme is proposed which requires a smaller number of transmit antennas than that required in the bi-space shift keying (BiSSK). Such a proposed SSK-based scheme is obtained by multiplexing two in-phase and quadrature generalized SSK streams and optimizing the carrier signals transmitted by the activated antennas. Performance of the proposed scheme is compared with other SSK-based schemes via minimum Euclidean distance analysis and computer simulation. The third scheme proposed in this part is an improved version of quadrature SM (QSM). The main feature of this proposed scheme is to send a second constellation symbol over the in-phase and quadrature antenna dimensions. A significant performance advantage of the proposed scheme is realized at the cost of a slight increase in the number of radio-frequency (RF) chains. Performance comparisons with the most recent SM schemes confirm the advantage of the proposed scheme. The last contribution of the first part is an optimal constellation design for QSM to minimize the average probability of error. It is shown that, the error performance of QSM not only depends on the Euclidean distances between the amplitude phase modulation (APM) symbols and the energies of APM symbols, but also on the in-phase and quadrature components of the QSM symbols. The analysis of the union bound of the average error probability reveals that at a very large number of transmit antennas, the optimal constellations for QSM converge to a quadrature phase shift keying (QPSK) constellation. Simulation results demonstrate the performance superiority of the obtained constellations over other modulation schemes. In the second part of the thesis, the applications of SM in frequency-selective fading channels are studied. First, a new transmission scheme that employs SM for each group of subcarriers in orthogonal frequency-division multiplexing (OFDM) transmission is investigated. Specifically, OFDM symbols in each group are passed through a precoder to maximize the diversity and coding gains, while SM is applied in each group to convey more information bits by antenna indices. Performance analysis and simulation results are carried out to demonstrate the superiority of the proposed scheme over a previously-proposed combination of SM and OFDM. Next, the performance of OFDM based on index modulation and a flexible version of OFDM, knows as OFDM with multiple constellations, is compared for both case of "no precoding'' and "with precoding'' of data symbols. It is shown that the precoded OFDM with multiple constellations outperforms precoded-IM based OFDM systems over frequency-selective fading channels. The last part of the thesis investigates a multiuser downlink transmission system based on in-phase and quadrature space-shift keying modulation and precoding to reduce the minimum number of transmit antennas while keeping the complexity of the receiver low. In addition to the maximum likelihood (ML) detection, the low complexity zero forcing (ZF) receiver is also studied. Theoretical upper bounds for the error probabilities of both ML and ZF receivers are obtained and corroborated with simulation results

    A Family of Hybrid Space-Time Codes for MIMO Wireless Communications

    Get PDF
    Hybrid MIMO space-time codes combine the benefits of spatial multiplexing with diversity gain to achieve both high spectral efficiency and link reliability. In this paper, we present a family of hybrid codes, known as LD STBC-VBLAST codes, along with a receiver architecture suitable for low-complexity hardware implementation. We show that, under Rayleigh fading, the performance of LD STBC-VBLAST codes is superior to other recently proposed hybrid codes. We also present a technique to derive, from a given propagation scenario, spatially correlated MIMO channel models adequate for space-time coding performance analysis. Using this technique, we evaluate the performance of LD STBC-VBLAST codes under several correlated channels.ITESO, A.C.ITSONCINVESTAV-IPNPROME

    Comparação do desempenho de arquiteturas híbridas para comunicações na banda das ondas milimétricas

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA proliferação massiva das comunicações sem os faz prever que o número de utilizadores aumente exponencialmente até 2020, o que tornar a necessário um suporte de tráfego milhares de vezes superior e com ligações na ordem dos Gigabit por segundo. Este incremento exigir a um aumento significativo da e ciência espectral e energética. Impõe-se portanto, uma mudança de paradigma dos sistemas de comunicação sem os convencionais, imposta pela introdução da 5a geração. Para o efeito, e necessário desenvolver novas e promissoras técnicas de transmissão, nomeadamente a utilização de ondas milimétricas em sistemas com um número massivo de antenas. No entanto, consideráveis desafios emergem ao adotar estas técnicas. Por um lado, este tipo de ondas sofre grandes dificuldades em termos de propagação. Por outro lado, a adoção de arquiteturas convencionais para sistemas com um número massivo de antenas e absolutamente inviável, devido ao custo e ao nível de complexidade inerentes. Isto acontece porque o processamento de sinal ao nível da camada f sica e maioritariamente feito em banda base, ou seja, no domínio digital requerendo uma cadeia RF por cada antena. Neste contexto as arquiteturas híbridas são uma proposta relativamente recente que visa simplificar a utilização de um grande número de antenas, dividindo o processamento entre os domínios analógico e digital. Para além disso, o número de cadeias RF necessárias e bastante inferior ao número total de antenas do sistema, contribuindo para obvias melhorias em termos de complexidade, custo e energia consumida. Nesta dissertação e implementada uma arquitetura híbrida para ondas milimétricas, onde cada cadeia RF está apenas conectada a um pequeno conjunto de antenas. E considerado um sistema contendo um transmissor e um recetor ambos equipados com um grande número de antenas e onde, o número de cadeias RF e bastante inferior ao número total de antenas. Pré-codificadores híbridos analógico/digital, recentemente propostos na literatura são utilizados e novos equalizadores híbridos analógico/digital são projetados. E feita uma avaliação de performance à arquitetura implementada e posteriormente comparada com uma outra arquitetura, onde todas as antenas estão conectadas a todas as cadeias RF.The expected massive proliferation of wireless systems points out an exponential increase in the number of users until 2020, which is needed to support up to one thousand times more tra c and connections in order of Gigabit per second. However, these goals require a signi cantly improvement in the spectral and energy e ciency. As a result, it is essential to make a paradigm shift in conventional wireless systems, imposed by the introduction of fth generation (5G). For this purpose, new and promising transmission techniques will be needed, namely the use of millimeter Waves (mmWave) in systems with a massive number of antenna elements. Nevertheless, considerable challenges emerge in the adoption of these techniques. On one hand, mmWave su er great di culties in terms of propagation. On the other hand, the using of conventional architectures for systems with a large number of antennas is absolutely impracticable because of the costs and the level of complexity. This happens because the signal processing in physical layer is mostly done in baseband, which means, that one RF chain for each antenna is required. In this context the hybrid architectures are a relatively recent proposal where the aim is to simplify the use of a large number of antenna elements, dividing the processing between the analog and digital domains. Moreover, the number of RF chains needed are much lower than the total number of antenna elements of the system, which contribute to obvious improvements in terms of complexity, costs and energy consumption. In this Dissertation a hybrid mmWave based architecture, where each RF chain is only connected to a small set of antennas, is implemented. It is considered a system comprising a transmitter and a receiver both equipped with a massive number of antennas and where the number of RF chains is much lower than the number of antennas. Hybrid analog/digital precoders recently proposed in the literature are used and a new hybrid analog/digital equalizer is designed. The implemented architecture is then evaluated and compared with other architecture, where all the antennas are connected to all RF chains
    • …
    corecore