17 research outputs found

    Etude et réalisation d'un systÚme de communications par lumiÚre visible (VLC/LiFi). Application au domaine automobile.

    Get PDF
    The scientific problematic of this PhD is centered on the usage of Visible LightCommunications (VLC) in automotive applications. By enabling wireless communication amongvehicles and also with the traffic infrastructure, the safety and efficiency of the transportation canbe substantially increased. Considering the numerous advantages of the VLC technologyencouraged the study of its appropriateness for the envisioned automotive applications, as analternative and/or a complement for the traditional radio frequency based communications.In order to conduct this research, a low-cost VLC system for automotive application wasdeveloped. The proposed system aims to ensure a highly robust communication between a LEDbasedVLC emitter and an on-vehicle VLC receiver. For the study of vehicle to vehicle (V2V)communication, the emitter was developed based on a vehicle backlight whereas for the study ofinfrastructure to vehicle (I2V) communication, the emitter was developed based on a traffic light.Considering the VLC receiver, a central problem in this area is the design of a suitable sensorable to enhance the conditioning of the signal and to avoid disturbances due to the environmentalconditions, issues that are addressed in the thesis. The performances of a cooperative drivingsystem integrating the two components were evaluated as well.The experimental validation of the VLC system was performed in various conditions andscenarios. The results confirmed the performances of the proposed system and demonstrated thatVLC can be a viable technology for the considered applications. Furthermore, the results areencouraging towards the continuations of the work in this domain.La problĂ©matique scientifique de cette thĂšse est centrĂ©e sur le dĂ©veloppement decommunications par lumiĂšre visible (Visible Light Communications - VLC) dans lesapplications automobiles. En permettant la communication sans fil entre les vĂ©hicules, ou entreles vĂ©hicules et l’infrastructure routiĂšre, la sĂ©curitĂ© et l'efficacitĂ© du transport peuvent ĂȘtreconsidĂ©rablement amĂ©liorĂ©es. Compte tenu des nombreux avantages de la technologie VLC,cette solution se prĂ©sente comme une excellente alternative ou un complĂ©ment pour lescommunications actuelles plutĂŽt basĂ©es sur les technologies radio-frĂ©quences traditionnelles.Pour rĂ©aliser ces travaux de recherche, un systĂšme VLC Ă  faible coĂ»t pour applicationautomobile a Ă©tĂ© dĂ©veloppĂ©. Le systĂšme proposĂ© vise Ă  assurer une communication trĂšs robusteentre un Ă©metteur VLC Ă  base de LED et un rĂ©cepteur VLC montĂ© sur un vĂ©hicule. Pour l'Ă©tudedes communications vĂ©hicule Ă  vĂ©hicule (V2V), l'Ă©metteur a Ă©tĂ© dĂ©veloppĂ© sur la base d’un pharearriĂšre rouge de voiture, tandis que pour l'Ă©tude des communications de l'infrastructure auvĂ©hicule (I2V), l'Ă©metteur a Ă©tĂ© dĂ©veloppĂ© sur la base d'un feu de circulation. ConsidĂ©rant lerĂ©cepteur VLC, le problĂšme principal rĂ©side autour d’un capteur appropriĂ©, en mesured'amĂ©liorer le conditionnement du signal et de limiter les perturbations dues des conditionsenvironnementales. Ces diffĂ©rents points sont abordĂ©s dans la thĂšse, d’un point de vue simulationmais Ă©galement rĂ©alisation du prototype.La validation expĂ©rimentale du systĂšme VLC a Ă©tĂ© rĂ©alisĂ©e dans diffĂ©rentes conditions etscĂ©narii. Les rĂ©sultats dĂ©montrent que la VLC peut ĂȘtre une technologie viable pour lesapplications envisagĂ©es

    Supporting code mobility and dynamic reconfigurations over Wireless MAC Processor Prototype

    Get PDF
    Mobile networks for Internet Access are a fundamental segment of Internet access net- works, where resource optimization are really critical because of the limited bandwidth availability. While traditionally resource optimizations have been focused on high effi- cient modulation and coding schemes, to be dynamically tuned according to the wireless channel and interference conditions, it has also been shown how medium access schemes can have a significant impact on the network performance according to the application and networking scenarios. This thesis work proposes an architectural solution for supporting Medium Access Con- trol (MAC) reconfigurations in terms of dynamic programming and code mobility. Since the MAC protocol is usually implemented in firmware/hardware (being constrained to very strict reaction times and to the rules of a specific standard), our solution is based on a different wireless card architecture, called Wireless MAC Processor (WMP), where standard protocols are replaced by standard programming interfaces. The control architecture developed in this thesis exploits this novel behavioral model of wireless cards for extending the network intelligence and enabling each node to be remotely reprogrammed by means a so called “MAC Program”, i.e. a software element that defines the description of a MAC protocol. This programmable protocol can be remotely injected and executed on running network devices allowing on-the-fly MAC reconfigurations. This work aim to obtain a formal description of the a software defined wireless network requirements and define a mechanism for a reliable MAC program code mobility throw the network elements, transparently to the upper-level and supervised by a global con- trol logic that optimizes the radio resource usage; it extends a single protocol paradigm implementation to a programmable protocol abstraction and redefines the overall wire- less network view with support for cognitive adaptation mechanisms. The envisioned solutions have been supported by real experiments running on different WMP proto- types , showing the benefits given by a medium control infrastructure which is dynamic, message-oriented and reconfigurable.Mobile networks for Internet Access are a fundamental segment of Internet access net- works, where resource optimization are really critical because of the limited bandwidth availability. While traditionally resource optimizations have been focused on high effi- cient modulation and coding schemes, to be dynamically tuned according to the wireless channel and interference conditions, it has also been shown how medium access schemes can have a significant impact on the network performance according to the application and networking scenarios. This thesis work proposes an architectural solution for supporting Medium Access Con- trol (MAC) reconfigurations in terms of dynamic programming and code mobility. Since the MAC protocol is usually implemented in firmware/hardware (being constrained to very strict reaction times and to the rules of a specific standard), our solution is based on a different wireless card architecture, called Wireless MAC Processor (WMP), where standard protocols are replaced by standard programming interfaces. The control architecture developed in this thesis exploits this novel behavioral model of wireless cards for extending the network intelligence and enabling each node to be remotely reprogrammed by means a so called “MAC Program”, i.e. a software element that defines the description of a MAC protocol. This programmable protocol can be remotely injected and executed on running network devices allowing on-the-fly MAC reconfigurations. This work aim to obtain a formal description of the a software defined wireless network requirements and define a mechanism for a reliable MAC program code mobility throw the network elements, transparently to the upper-level and supervised by a global con- trol logic that optimizes the radio resource usage; it extends a single protocol paradigm implementation to a programmable protocol abstraction and redefines the overall wire- less network view with support for cognitive adaptation mechanisms. The envisioned solutions have been supported by real experiments running on different WMP proto- types , showing the benefits given by a medium control infrastructure which is dynamic, message-oriented and reconfigurable

    Using Distributed Ledger Technologies in VANETs to Achieve Trusted Intelligent Transportation Systems

    Get PDF
    With the recent advancements in the networking realm of computers as well as achieving real-time communication between devices over the Internet, IoT (Internet of Things) devices have been on the rise; collecting, sharing, and exchanging data with other connected devices or databases online, enabling all sorts of communications and operations without the need for human intervention, oversight, or control. This has caused more computer-based systems to get integrated into the physical world, inching us closer towards developing smart cities. The automotive industry, alongside other software developers and technology companies have been at the forefront of this advancement towards achieving smart cities. Currently, transportation networks need to be revamped to utilize the massive amounts of data being generated by the public’s vehicle’s on-board devices, as well as other integrated sensors on public transit systems, local roads, and highways. This will create an interconnected ecosystem that can be leveraged to improve traffic efficiency and reliability. Currently, Vehicular Ad-hoc Networks (VANETs) such as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-grid (V2G) communications, all play a major role in supporting road safety, traffic efficiency, and energy savings. To protect these devices and the networks they form from being targets of cyber-related attacks, this paper presents ideas on how to leverage distributed ledger technologies (DLT) to establish secure communication between vehicles that is decentralized, trustless, and immutable. Incorporating IOTA’s protocols, as well as utilizing Ethereum’s smart contracts functionality and application concepts with VANETs, all interoperating with Hyperledger’s Fabric framework, several novel ideas can be implemented to improve traffic safety and efficiency. Such a modular design also opens up the possibility to further investigate use cases of the blockchain and distributed ledger technologies in creating a decentralized intelligent transportation system (ITS)

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Low cost network camera sensors for traffic monitoring

    Get PDF
    Report on a study investigating the ways new video and wireless technology can be implemented into Texas Department of Transportation video monitoring systems to increase efficiency and reduce costs

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks
    corecore