20 research outputs found

    An agile supply modulator with improved transient performance for power efficient linear amplifier employing envelope tracking techniques

    Get PDF
    This article presents an agile supply modulator with optimal transient performance that includes improvement in rise time, overshoot and settling time for the envelope tracking supply in linear power amplifiers. For this purpose, we propose an on-demand current source module: the bang-bang transient performance enhancer (BBTPE). Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further helps the proposed system to reduce both overshoot and settling time. This article also introduces an efficient selective tracking of envelope signal for linear PAs. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in adjacent channel power ratio (ACPR) and error vector magnitude (EVM), respectively.Peer ReviewedPostprint (author's final draft

    Digitally assisted control techniques for high performance switching DC-DC converters

    Get PDF
    Digitally controlled switching DC-DC converters have recently emerged as an attractive alternative to conventional switching converters based on analog control techniques. This research focuses on eliminating the issues associated with the state of the art switching converters by proposing three novel control techniques: (1) a digitally controlled Buck-Boost converter uses a fully synthesized constant ON/OFF time-based fractional-N controller to regulate the output over a 3.3V-to-5.5V input voltage range and provides seamless transition from buck to buck-boost modes (2) a hysteretic buck converter that employs a highly digital hybrid voltage/current mode control to regulate output voltage and switching frequency independently (3) a 10MHz continuous time PID controller using time based signal processing which alleviates the speed limitations associated with conventional analog and digital. All the three techniques employ digitally assisted control techniques and require no external compensation thus making the controllers fully integrated and highly cost effective

    Power Management and SRAM for Energy-Autonomous and Low-Power Systems

    Full text link
    We demonstrate the two first-known, complete, self-powered millimeter-scale computer systems. These microsystems achieve zero-net-energy operation using solar energy harvesting and ultra-low-power circuits. A medical implant for monitoring intraocular pressure (IOP) is presented as part of a treatment for glaucoma. The 1.5mm3 IOP monitor is easily implantable because of its small size and measures IOP with 0.5mmHg accuracy. It wirelessly transmits data to an external wand while consuming 4.7nJ/bit. This provides rapid feedback about treatment efficacies to decrease physician response time and potentially prevent unnecessary vision loss. A nearly-perpetual temperature sensor is presented that processes data using a 2.1μW near-threshold ARM°R Cortex- M3TM μP that provides a widely-used and trusted programming platform. Energy harvesting and power management techniques for these two microsystems enable energy-autonomous operation. The IOP monitor harvests 80nW of solar power while consuming only 5.3nW, extending lifetime indefinitely. This allows the device to provide medical information for extended periods of time, giving doctors time to converge upon the best glaucoma treatment. The temperature sensor uses on-demand power delivery to improve low-load dc-dc voltage conversion efficiency by 4.75x. It also performs linear regulation to deliver power with low noise, improved load regulation, and tight line regulation. Low-power high-throughput SRAM techniques help millimeter-scale microsystems meet stringent power budgets. VDD scaling in memory decreases energy per access, but also decreases stability margins. These margins can be improved using sizing, VTH selection, and assist circuits, as well as new bitcell designs. Adaptive Crosshairs modulation of SRAM power supplies fixes 70% of parametric failures. Half-differential SRAM design improves stability, reducing VMIN by 72mV. The circuit techniques for energy autonomy presented in this dissertation enable millimeter-scale microsystems for medical implants, such as blood pressure and glucose sensors, as well as non-medical applications, such as supply chain and infrastructure monitoring. These pervasive sensors represent the continuation of Bell’s Law, which accurately traces the evolution of computers as they become smaller, more numerous, and more powerful. The development of millimeter-scale massively-deployed ubiquitous computers ensures the continued expansion and profitability of the semiconductor industry. NanoWatt circuit techniques will allow us to meet this next frontier in IC design.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86387/1/grgkchen_1.pd

    RF Power Amplifier and Its Envelope Tracking

    Get PDF
    This dissertation introduces an agile supply modulator with optimal transient performance for the envelope tracking supply in linear power amplifiers. For this purpose, an on-demand current source module, the bang-bang transient performance enhancer (BBTPE), is proposed. Its objective is to follow fast variations in input signals with reduced overshoot and settling time without deteriorating the steady-state performance of the buck regulator. The proposed approach enables fast system response through the BBTPE and an accurate steady-state output response through a low switching ripple and power efficient dynamic buck regulator. Fast output response with the help of the added module induces a slower rise of inductor current in the buck converter that further assists the proposed system to reduce both overshoot and settling time. To demonstrate the feasibility of the proposed solution, extensive simulations and experimental results from a discrete system are reported. The proposed supply modulator shows 80% improvement in rise time along with 60% reduction in both overshoot and settling time compared to the conventional dynamic buck regulator-based solution. Experimental results for a PA using the LTE 16-QAM 5 MHz standard shows improvement of 7.68 dB and 65.1% in ACPR and EVM, respectively. In a polar power amplifier, the input signal splits into phase and amplitude components using a non-linear conversion operation. This operation broadens the spectrum of the polar signal components. The information of amplitude and phase contains spectral images due to the sampling operation in non-linear conversion operation. These spectral images can be large and cause out-of-band emission in the output spectrum. In addition, during the recombination process of phase and amplitude, a delay mismatch between amplitude and phase signals, which can occur due to separate processing paths of amplitude and phase signals, causes out-of-band emissions, also known as spectral regrowth. This dissertation presents solutions to both of the issues of digital polar power amplifier: spectral images and delay mismatch. In order to reduce the problem of spectral images, interpolation of phase and amplitude is proposed in this work. This increases the effective sampling frequency of the amplitude and phase, which helps to improve the linearity by around 10 dB. In addition, a novel calibration scheme is proposed here for the delay mismatch between phase and amplitude path in a digital polar power amplifier. The scheme significantly reduces the spectral regrowth. The scheme uses the same path for phase and amplitude delay calculation after the recombination that allows having a robust calibration. Furthermore, it can be executed during the empty transmission slots. The proposed scheme is designed in a 40 nm CMOS technology and simulated with a 64-QAM IEEE 802.11n wireless standard. The scheme achieved 7.57 dB enhancement in ACLR and 84.35% improvement in EVM for a 3.5 ns mismatch in phase and amplitude path

    Efficient and Scalable Computing for Resource-Constrained Cyber-Physical Systems: A Layered Approach

    Get PDF
    With the evolution of computing and communication technology, cyber-physical systems such as self-driving cars, unmanned aerial vehicles, and mobile cognitive robots are achieving increasing levels of multifunctionality and miniaturization, enabling them to execute versatile tasks in a resource-constrained environment. Therefore, the computing systems that power these resource-constrained cyber-physical systems (RCCPSs) have to achieve high efficiency and scalability. First of all, given a fixed amount of onboard energy, these computing systems should not only be power-efficient but also exhibit sufficiently high performance to gracefully handle complex algorithms for learning-based perception and AI-driven decision-making. Meanwhile, scalability requires that the current computing system and its components can be extended both horizontally, with more resources, and vertically, with emerging advanced technology. To achieve efficient and scalable computing systems in RCCPSs, my research broadly investigates a set of techniques and solutions via a bottom-up layered approach. This layered approach leverages the characteristics of each system layer (e.g., the circuit, architecture, and operating system layers) and their interactions to discover and explore the optimal system tradeoffs among performance, efficiency, and scalability. At the circuit layer, we investigate the benefits of novel power delivery and management schemes enabled by integrated voltage regulators (IVRs). Then, between the circuit and microarchitecture/architecture layers, we present a voltage-stacked power delivery system that offers best-in-class power delivery efficiency for many-core systems. After this, using Graphics Processing Units (GPUs) as a case study, we develop a real-time resource scheduling framework at the architecture and operating system layers for heterogeneous computing platforms with guaranteed task deadlines. Finally, fast dynamic voltage and frequency scaling (DVFS) based power management across the circuit, architecture, and operating system layers is studied through a learning-based hierarchical power management strategy for multi-/many-core systems
    corecore