24 research outputs found

    1.05-GHz CMOS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Contour-Mode MEMS Resonators

    Get PDF
    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contour-mode resonators. The oscillator shows a phase noise level of −81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of −146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-μm complementary metal-oxide-semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications

    RF MEMS/NEMS RESONATORS FOR WIRELESS COMMUNICATION SYSTEMS AND ADSORPTION-DESORPTION PHASE NOISE

    Get PDF
    During the past two decades a considerable effort has been made to develop radio-frequency (RF) resonators which are fabricated using the micro/nanoelectro-mechanical systems (MEMS/NEMS) technologies, in order to replace conventional large off-chip components in wireless transceivers and other high-speed electronic systems.The first part of the paper presents an overview of RF MEMS and NEMS resonators, including those based on two-dimensional crystals (e.g. graphene). The frequency tuning in MEMS/NEMS resonators is then analyzed. Improvements that would be necessary in order for MEMS/NEMS resonators to meet the requirements of wireless systems are also discussed.The analysis of noise of RF MEMS/NEMS resonators and oscillators is especially important in modern wireless communication systems due to increasingly stringent requirements regarding the acceptable noise level in every next generation. The second part of the paper presents the analysis of adsorption-desorption (AD) noise in RF MEMS/NEMS resonators, which becomes pronounced with the decrease of components' dimensions, and is not sufficiently elaborated in the existing literature about such components. Finally, a theoretical model of phase noise in RF MEMS/NEMS oscillators will be presented, with a special emphasize on the influence of the resonator AD noise on the oscillator phase noise

    Ferroelectric-on-Silicon Switchable Bulk Acoustic Wave Resonators and Filters for RF Applications.

    Full text link
    Todays’ multi-band mobile phones’ RF front ends require separate transceivers for each frequency band. Future wireless mobile devices are expected to accommodate a larger number of frequency bands; therefore using the existing transceiver configurations becomes prohibitive. One of the key RF components in wireless devices is the image reject and band-selection filter. Today’s multi-band mobile phones use bulk acoustic wave (BAW) filters in conjunction with solid-state or MEMS-based RF switches for selecting the frequency band of operation. This approach results in very complex circuits. As number of frequency bands increases, ferroelectric BST, operating at its paraelectric phase, has recently been utilized in designing intrinsically switchable BAW resonators and filters due to its voltage induced piezoelectricity. The intrinsically switchable BAW resonators and filters are suitable for designing compact multiband and frequency agile transceivers as they can be switched on and off by simply controlling the dc bias voltage across the ferroelectric layer instead of using separate MEMS or solid-state based RF switches. In this thesis, composite ferroelectric resonators are studied to improve the Q of intrinsically switchable BAW resonators. Intrinsically switchable BAW resonators with record Q values based on ferroelectric-on-silicon composite structures have been demonstrated. In addition, two types of intrinsically switchable BAW filters using ferroelectric-on-silicon composite structure: electrically connected filters and laterally coupled acoustic filters are studied. In the first part of this thesis, the design, fabrication and measurement results for high-Q composite film bulk acoustic resonators (FBARs) are discussed. Subsequently, an intrinsically switchable electrically connected filter based on ferroelectric-on-silicon composite FBARs is presented. Finally, an intrinsically switchable laterally coupled acoustic filter with a ferroelectric-on-silicon composite structure is presented. The reported laterally coupled acoustic filter represents the first demonstration of a BST based intrinsically switchable acoustically coupled filter.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107289/1/siss_1.pd

    Monolithic MEMS filter banks on RFSOI front-end module

    Get PDF
    This work is the first demonstration of a monolithic multiband RF front-end module (RF-FEM), integrating MEMS Lamb-wave filters and switches on 200mm RF silicon-on-insulator (RFSOI) foundry technology. Multiple MEMS filters with photolithography-defined frequencies coexist with RF components in the same wafer. This technology enables vertical integration of RF-FEM components for more compact System-on-Chip (SoC) architectures. The resulting RF-FEMs will then integrate in the same process multi-frequency filter banks, low noise amplifiers (LNAs), and switches, with a footprint reduction up to 50% compared to system-in-package (SiP) modules. The SoC architecture also simplifies the design of interconnection lines and impedance matching networks

    MEMS-BASED OSCILLATORS: A REVIEW

    Get PDF
    ABSTRACT: This paper presents an overview of microelectromechanical (MEMS) based oscillators. The accuracy and stability of the reference frequency will normally limit the performance of most wireless communication systems. MEMS technology is the technology of choice due to its compatibility to silicon, leading to integration with circuits and lowering power consumption. MEMS based oscillators also provide the potential of a fully integrated transceiver. The most commonly used topology for MEMS based oscillators are pierce oscillator circuit topology and TIA circuit topology. Both topologies result in very competitive output in terms of phase noise and power consumption.  They can be used for either higher or lower Rx. The major difference between both topologies is the number of transistors used. TIA circuit used more number of transistor compare to pierce circuit. Thus design complexity of the TIA is higher. Pierce circuit is simpler, provide straightforward biasing and easier to design. The highly integratable of MEMS-based oscillators have made them much needed in future multiband wireless system. So that future wireless systems are able to function globally without any problem. ABSTRAK: Kertas kerja ini membentangkan gambaran keseluruhan mikroelektromekanikal (MEMS) berdasarkan pengayun.  Ketepatan dan kestabilan frekuensi rujukan sering membataskan perlaksanaan kebanyakan sistem komunikasi tanpa wayar. Teknologi MEMS merupakan teknologi pilihan memandangkan ia serasi dengan silikon; membolehkan integrasi dengan litar dan penggunaan tenaga yang rendah.  Pengayun berdasarkan MEMS juga  berpotensi sebagai integrasi penuh penghantar-terima. Topologi yang sering digunakan untuk pengayun berdasarkan MEMS adalah topologi litar pengayun pencantas dan topologi litar TIA.  Keputusan bagi kedua-dua topologi adalah amat kompetitif dari segi fasa bunyi dan penggunaan tenaga. Ia boleh digunakan untuk meninggikan atau merendahkan Rx. Perbezaan utama di antara kedua-dua topologi adalah bilangan transistor yang digunakan. Litar TIA menggunakan bilangan transistor yang lebih daripada litar pencantas.  Maka, rekaan TIA adalah lebih rumit.  Litar pencantas adalah lebih ringkas, memberikan pincangan yang jelas dan rekabentuk yang mudah. Pengayun berdasarkan MEMS amat bersepadu menjadikan ia sesuai sebagai sistem tanpa wayar berbilang jalur masa depan.  Jesteru sistem tanpa wayar dapat berfungsi pada peringkat global tanpa sebarang kesulitan

    GigaHertz Symposium 2010

    Get PDF

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network
    corecore