3,210 research outputs found

    A low dimensional model for bike sharing demand forecasting

    Full text link
    Big, transport-related datasets are nowadays publicly available, which makes data-driven mobility analysis possible. Trips with their origins, destinations and travel times are collected in publicly available big databases, which allows for a deeper and richer understanding of mobility patterns. This paper proposes a low dimensional approach to combine these data sources with weather data in order to forecast the daily demand for Bike Sharing Systems (BSS). The core of this approach lies in the proposed clustering technique, which reduces the dimension of the problem and, differently from other machine learning techniques, requires limited assumptions on the model or its parameters. The proposed clustering technique synthesizes mobility data quantitatively (number of trips) and spatially (mean trip origin and destination). This allows identifying recursive mobility patterns that - when combined with weather data - provide accurate predictions of the demand. The method is tested with real-world data from New York City. We synthesize more than four million trips into vectors of movement, which are then combined with weather data to forecast the daily demand at a city-level. Results show that, already with a one-parameters model, the proposed approach provides accurate predictions.Comment: 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Fleet management in free-floating bike sharing systems using predictive modelling and explorative tools

    Get PDF
    For redistribution and operating bikes in a free-floating systems, two measures are of highest priority. First, the information about the expected number of rentals on a day is an important measure for service providers for management and service of their fleet. The estimation of the expected number of bookings is carried out with a simple model and a more complex model based on meterological information, as the number of loans depends strongly on the current and forecasted weather. Secondly, the knowledge of a service level violation in future on a fine spatial resolution is important for redistribution of bikes. With this information, the service provider can set reward zones where service level violations will occur in the near future. To forecast a service level violation on a fine geographical resolution the current distribution of bikes as well as the time and space information of past rentals has to be taken into account. A Markov Chain Model is formulated to integrate this information. We develop a management tool that describes in an explorative way important information about past, present and predicted future counts on rentals in time and space. It integrates all estimation procedures. The management tool is running in the browser and continuously updates the information and predictions since the bike distribution over the observed area is in continous flow as well as new data are generated continuously

    A spatio-temporal deep learning model for short-term bike-sharing demand prediction

    Get PDF
    Bike-sharing systems are widely operated in many cities as green transportation means to solve the last mile problem and reduce traffic congestion. One of the critical challenges in operating high-quality bike-sharing systems is rebalancing bike stations from being full or empty. However, the complex characteristics of spatiotemporal dependency on usage demand may lead to difficulties for traditional statistical models in dealing with this complex relationship. To address this issue, we propose a graph-based neural network model to learn the representation of bike-sharing demand spatial-temporal graph. The model has the ability to use graph-structured data and takes both spatial -and temporal aspects into consideration. A case study about bike-sharing systems in Nanjing, a large city in China, is conducted based on the proposed method. The results show that the algorithm can predict short-term bike demand with relatively high accuracy and low computing time. The predicted errors for the hourly station level usage demand prediction are often within 20 bikes. The results provide helpful tools for short-term usage demand prediction of bike-sharing systems and other similar shared mobility systems

    Deep trip generation with graph neural networks for bike sharing system expansion

    Full text link
    Bike sharing is emerging globally as an active, convenient, and sustainable mode of transportation. To plan successful bike-sharing systems (BSSs), many cities start from a small-scale pilot and gradually expand the system to cover more areas. For station-based BSSs, this means planning new stations based on existing ones over time, which requires prediction of the number of trips generated by these new stations across the whole system. Previous studies typically rely on relatively simple regression or machine learning models, which are limited in capturing complex spatial relationships. Despite the growing literature in deep learning methods for travel demand prediction, they are mostly developed for short-term prediction based on time series data, assuming no structural changes to the system. In this study, we focus on the trip generation problem for BSS expansion, and propose a graph neural network (GNN) approach to predicting the station-level demand based on multi-source urban built environment data. Specifically, it constructs multiple localized graphs centered on each target station and uses attention mechanisms to learn the correlation weights between stations. We further illustrate that the proposed approach can be regarded as a generalized spatial regression model, indicating the commonalities between spatial regression and GNNs. The model is evaluated based on realistic experiments using multi-year BSS data from New York City, and the results validate the superior performance of our approach compared to existing methods. We also demonstrate the interpretability of the model for uncovering the effects of built environment features and spatial interactions between stations, which can provide strategic guidance for BSS station location selection and capacity planning

    Hourly Demand Prediction of Shared Mobility Ridership

    Get PDF
    This research focuses on predicting the hourly number of bikes needed using Citi bike data. Micro mobility is the new trend that serves the transportation sector in any city. With the development of technology and introduction of new modes, comes new challenges. Bike sharing is the most developed and standard micro mobility device with extensive data sources. In this research we introduce the rebalancing bike sharing problem, which is very recent and interesting problem. Bikes are being ridden from a station and returned to another, not necessarily the same one of departure, this procedure can cause some stations to be empty while others to be full, as a result, there is a need for a method by which distribution of bikes among stations are done. Using year-round historical trip data obtained from one of the famous bike operators in New York that is Citi bike. The study aims to find the factors affecting bike ridership and then by utilizing some predictive algorithms such as, regression models, k-means, decision trees and random forest a model will be created to estimate the number of bikes needed in an hourly basis regardless of any specific stations initially. Where accuracy will be eventually calculated. The testing will be initially evaluating the data of Citi bike in New York, however, the same can be utilized to evaluate data from other cities worldwide and operators, as well as other micro mobility modes such as e-scooters, mopeds, and others. Initially the Prediction problem will be evaluated against the current data available in the open-source Citi-Bike data, however, weather factors, bike infrastructure, and some other open-source data can be integrated for better results
    • …
    corecore