10,270 research outputs found

    Studies of Shrinkage in Photopolymerisable Materials for Holographic Applications

    Get PDF
    Holography is now firmly established as a tool for scientific and engineering studies and also as a display medium. Holographic performance mainly depends on the choice of recording wavelengths, recording material, recording conditions and experimental setup as well as environmental conditions in the laboratory. Acrylamide based photopolymer has significant advantages as a holographic recording material such as self-development, low scatter, high diffraction efficiency, ease of preparation and low cost. The main objective of this project is to determine and minimise the shrinkage of an acrylamide based photopolymer developed in the Centre for Industrial and Engineering Optics for holographic recording. This recording material is sensitized in the visible spectrum with Erythrosine B, a green sensitive dye. The shrinkage of the material is determined for different exposure intensities and thicknesses using different techniques in order to determine the optimum conditions for holographic recording. We also have carried out experiments at different spatial frequencies of recording. The influence of nanoparticle dopants on the shrinkage, diffraction efficiency and the dynamic range of the photopolymer system is also studied. The results shows that careful consideration is needed to attain maximum efficiency and minimum shrinkage during holographic recording. Incorporation of zeolite nanoparticles shows improvement in holographic recording characteristics in the photopolymer material. Diffraction efficiency is improved up to 40% and shrinkage is reduced to one half with increased concentration of nanoparticles. Using Electronic Speckle Pattern Interferometry (ESPI) phase shifting technique a 3D map due to shrinkage has been calculated. The shrinkage map has the same circular symmetry as the profile of the recording beam as expected

    Attributing scientific and technical progress: the case of holography

    Get PDF
    Holography, the three-dimensional imaging technology, was portrayed widely as a paradigm of progress during its decade of explosive expansion 1964–73, and during its subsequent consolidation for commercial and artistic uses up to the mid 1980s. An unusually seductive and prolific subject, holography successively spawned scientific insights, putative applications and new constituencies of practitioners and consumers. Waves of forecasts, associated with different sponsors and user communities, cast holography as a field on the verge of success—but with the dimensions of success repeatedly refashioned. This retargeting of the subject represented a degree of cynical marketeering, but was underpinned by implicit confidence in philosophical positivism and faith in technological progressivism. Each of its communities defined success in terms of expansion, and anticipated continual progressive increase. This paper discusses the contrasting definitions of progress in holography, and how they were fashioned in changing contexts. Focusing equally on reputed ‘failures’ of some aspects of the subject, it explores the varied attributes by which success and failure were linked with progress by different technical communities. This important case illuminates the peculiar post-World War II environment that melded the military, commercial and popular engagement with scientific and technological subjects, and the competing criteria by which they assessed the products of science

    Field-portable pixel super-resolution colour microscope.

    Get PDF
    Based on partially-coherent digital in-line holography, we report a field-portable microscope that can render lensfree colour images over a wide field-of-view of e.g., >20 mm(2). This computational holographic microscope weighs less than 145 grams with dimensions smaller than 17×6×5 cm, making it especially suitable for field settings and point-of-care use. In this lensfree imaging design, we merged a colorization algorithm with a source shifting based multi-height pixel super-resolution technique to mitigate 'rainbow' like colour artefacts that are typical in holographic imaging. This image processing scheme is based on transforming the colour components of an RGB image into YUV colour space, which separates colour information from brightness component of an image. The resolution of our super-resolution colour microscope was characterized using a USAF test chart to confirm sub-micron spatial resolution, even for reconstructions that employ multi-height phase recovery to handle dense and connected objects. To further demonstrate the performance of this colour microscope Papanicolaou (Pap) smears were also successfully imaged. This field-portable and wide-field computational colour microscope could be useful for tele-medicine applications in resource poor settings

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin

    The Baryonic Phase in Holographic Descriptions of the QCD Phase Diagram

    Full text link
    We study holographic models of the QCD temperature-chemical potential phase diagram based on the D3/D7 system with chiral symmetry breaking. The baryonic phase may be included through linked D5-D7 systems. In a previous analysis of a model with a running gauge coupling a baryonic phase was shown to exist to arbitrarily large chemical potential. Here we explore this phase in a more generic phenomenological setting with a step function dilaton profile. The change in dilaton generates a linear confining qˉq\bar{q}q potential and opposes the screening effect of temperature. We show that the persistence of the baryonic phase depends on the step size and that QCD-like phase diagrams can be described. The baryonic phase's existence is qualitatively linked to the existence of confinement in Wilson loop computations in the background.Comment: 21 pages, 7 figure

    Holographic enhanced remote sensing system

    Get PDF
    The Holographic Enhanced Remote Sensing System (HERSS) consists of three primary subsystems: (1) an Image Acquisition System (IAS); (2) a Digital Image Processing System (DIPS); and (3) a Holographic Generation System (HGS) which multiply exposes a thermoplastic recording medium with sequential 2-D depth slices that are displayed on a Spatial Light Modulator (SLM). Full-parallax holograms were successfully generated by superimposing SLM images onto the thermoplastic and photopolymer. An improved HGS configuration utilizes the phase conjugate recording configuration, the 3-SLM-stacking technique, and the photopolymer. The holographic volume size is currently limited to the physical size of the SLM. A larger-format SLM is necessary to meet the desired 6 inch holographic volume. A photopolymer with an increased photospeed is required to ultimately meet a display update rate of less than 30 seconds. It is projected that the latter two technology developments will occur in the near future. While the IAS and DIPS subsystems were unable to meet NASA goals, an alternative technology is now available to perform the IAS/DIPS functions. Specifically, a laser range scanner can be utilized to build the HGS numerical database of the objects at the remote work site

    The ePetri dish, an on-chip cell imaging platform based on subpixel perspective sweeping microscopy (SPSM)

    Get PDF
    We report a chip-scale lensless wide-field-of-view microscopy imaging technique, subpixel perspective sweeping microscopy, which can render microscopy images of growing or confluent cell cultures autonomously. We demonstrate that this technology can be used to build smart Petri dish platforms, termed ePetri, for cell culture experiments. This technique leverages the recent broad and cheap availability of high performance image sensor chips to provide a low-cost and automated microscopy solution. Unlike the two major classes of lensless microscopy methods, optofluidic microscopy and digital in-line holography microscopy, this new approach is fully capable of working with cell cultures or any samples in which cells may be contiguously connected. With our prototype, we demonstrate the ability to image samples of area 6 mm × 4 mm at 660-nm resolution. As a further demonstration, we showed that the method can be applied to image color stained cell culture sample and to image and track cell culture growth directly within an incubator. Finally, we showed that this method can track embryonic stem cell differentiations over the entire sensor surface. Smart Petri dish based on this technology can significantly streamline and improve cell culture experiments by cutting down on human labor and contamination risks

    Photolithographic fabrication method of computer-generated holographic interferograms

    Get PDF
    We consider the fabrication of high-quality interferogram-type diffractive optical elements with conventional photolithographic techniques and compare the results with those achievable with electron-beam lithography. The fringes associated with the phase transfer function of the binary phase holographic interferogram are approximated with rectangles, which can be realized at submicron accuracy using a pattern generator and step-and-repeat camera. The effects of the rectangle quantization are analyzed both numerically and experimentally with the aid of diffraction patterns produced by simple focusing elements. Both resolution and diffraction efficiency of the best holograms approach their theoretical values
    corecore