103 research outputs found

    Maximum-Entropy-Model-Enabled Complexity Reduction Algorithm in Modern Video Coding Standards

    Get PDF
    Symmetry considerations play a key role in modern science, and any differentiable symmetry of the action of a physical system has a corresponding conservation law. Symmetry may be regarded as reduction of Entropy. This work focuses on reducing the computational complexity of modern video coding standards by using the maximum entropy principle. The high computational complexity of the coding unit (CU) size decision in modern video coding standards is a critical challenge for real-time applications. This problem is solved in a novel approach considering CU termination, skip, and normal decisions as three-class making problems. The maximum entropy model (MEM) is formulated to the CU size decision problem, which can optimize the conditional entropy; the improved iterative scaling (IIS) algorithm is used to solve this optimization problem. The classification features consist of the spatio-temporal information of the CU, including the rate–distortion (RD) cost, coded block flag (CBF), and depth. For the case analysis, the proposed method is based on High Efficiency Video Coding (H.265/HEVC) standards. The experimental results demonstrate that the proposed method can reduce the computational complexity of the H.265/HEVC encoder significantly. Compared with the H.265/HEVC reference model, the proposed method can reduce the average encoding time by 53.27% and 56.36% under low delay and random access configurations, while Bjontegaard Delta Bit Rates (BD-BRs) are 0.72% and 0.93% on average

    Bayesian adaptive algorithm for fast coding unit decision in the High Efficiency Video Coding (HEVC) standard

    Get PDF
    The latest High Efficiency Video Coding standard (HEVC) provides a set of new coding tools to achieve a significantly higher coding efficiency than previous standards. In this standard, the pixels are first grouped into Coding Units (CU), then Prediction Units (PU), and finally Transform Units (TU). All these coding levels are organized into a quadtree-shaped arrangement that allows highly flexible data representation; however, they involve a very high computational complexity. In this paper, we propose an effective early CU depth decision algorithm to reduce the encoder complexity. Our proposal is based on a hierarchical approach, in which a hypothesis test is designed to make a decision at every CU depth, where the algorithm either produces an early termination or decides to evaluate the subsequent depth level. Moreover, the proposed method is able to adaptively estimate the parameters that define each hypothesis test, so that it adapts its behavior to the variable contents of the video sequences. The proposed method has been extensively tested, and the experimental results show that our proposal outperforms several state-of-the-art methods, achieving a significant reduction of the computational complexity (36.5% and 38.2% average reductions in coding time for two different encoder configurations) in exchange for very slight losses in coding performance (1.7% and 0.8% average bit rate increments).This work has been partially supported by the National Grant TEC2014-53390-P of the Spanish Ministry of Economy and Competitiveness

    Fast Depth and Inter Mode Prediction for Quality Scalable High Efficiency Video Coding

    Get PDF
    International audienceThe scalable high efficiency video coding (SHVC) is an extension of high efficiency video coding (HEVC), which introduces multiple layers and inter-layer prediction, thus significantly increases the coding complexity on top of the already complicated HEVC encoder. In inter prediction for quality SHVC, in order to determine the best possible mode at each depth level, a coding tree unit can be recursively split into four depth levels, including merge mode, inter2Nx2N, inter2NxN, interNx2N, interNxN, in-ter2NxnU, inter2NxnD, internLx2N and internRx2N, intra modes and inter-layer reference (ILR) mode. This can obtain the highest coding efficiency, but also result in very high coding complexity. Therefore, it is crucial to improve coding speed while maintaining coding efficiency. In this research, we have proposed a new depth level and inter mode prediction algorithm for quality SHVC. First, the depth level candidates are predicted based on inter-layer correlation, spatial correlation and its correlation degree. Second, for a given depth candidate, we divide mode prediction into square and non-square mode predictions respectively. Third, in the square mode prediction, ILR and merge modes are predicted according to depth correlation, and early terminated whether residual distribution follows a Gaussian distribution. Moreover, ILR mode, merge mode and inter2Nx2N are early terminated based on significant differences in Rate Distortion (RD) costs. Fourth, if the early termination condition cannot be satisfied, non-square modes are further predicted based on significant differences in expected values of residual coefficients. Finally, inter-layer and spatial correlations are combined with residual distribution to examine whether to early terminate depth selection. Experimental results have demonstrated that, on average, the proposed algorithm can achieve a time saving of 71.14%, with a bit rate increase of 1.27%

    CTU Depth Decision Algorithms for HEVC: A Survey

    Get PDF
    High-Efficiency Video Coding (HEVC) surpasses its predecessors in encoding efficiency by introducing new coding tools at the cost of an increased encoding time-complexity. The Coding Tree Unit (CTU) is the main building block used in HEVC. In the HEVC standard, frames are divided into CTUs with the predetermined size of up to 64x64 pixels. Each CTU is then divided recursively into a number of equally sized square areas, known as Coding Units (CUs). Although this diversity of frame partitioning increases encoding efficiency, it also causes an increase in the time complexity due to the increased number of ways to find the optimal partitioning. To address this complexity, numerous algorithms have been proposed to eliminate unnecessary searches during partitioning CTUs by exploiting the correlation in the video. In this paper, existing CTU depth decision algorithms for HEVC are surveyed. These algorithms are categorized into two groups, namely statistics and machine learning approaches. Statistics approaches are further subdivided into neighboring and inherent approaches. Neighboring approaches exploit the similarity between adjacent CTUs to limit the depth range of the current CTU, while inherent approaches use only the available information within the current CTU. Machine learning approaches try to extract and exploit similarities implicitly. Traditional methods like support vector machines or random forests use manually selected features, while recently proposed deep learning methods extract features during training. Finally, this paper discusses extending these methods to more recent video coding formats such as Versatile Video Coding (VVC) and AOMedia Video 1(AV1)

    Steered mixture-of-experts for light field images and video : representation and coding

    Get PDF
    Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids. These grids are then further decorrelated through hybrid DPCM/transform techniques. However, these 2-D regular grids are less suited for high-dimensional data, such as LFs. We propose a novel coding framework for higher-dimensional image modalities, called Steered Mixture-of-Experts (SMoE). Coherent areas in the higher-dimensional space are represented by single higher-dimensional entities, called kernels. These kernels hold spatially localized information about light rays at any angle arriving at a certain region. The global model consists thus of a set of kernels which define a continuous approximation of the underlying plenoptic function. We introduce the theory of SMoE and illustrate its application for 2-D images, 4-D LF images, and 5-D LF video. We also propose an efficient coding strategy to convert the model parameters into a bitstream. Even without provisions for high-frequency information, the proposed method performs comparable to the state of the art for low-to-mid range bitrates with respect to subjective visual quality of 4-D LF images. In case of 5-D LF video, we observe superior decorrelation and coding performance with coding gains of a factor of 4x in bitrate for the same quality. At least equally important is the fact that our method inherently has desired functionality for LF rendering which is lacking in other state-of-the-art techniques: (1) full zero-delay random access, (2) light-weight pixel-parallel view reconstruction, and (3) intrinsic view interpolation and super-resolution

    Efficient VVC Intra Prediction Based on Deep Feature Fusion and Probability Estimation

    Full text link
    The ever-growing multimedia traffic has underscored the importance of effective multimedia codecs. Among them, the up-to-date lossy video coding standard, Versatile Video Coding (VVC), has been attracting attentions of video coding community. However, the gain of VVC is achieved at the cost of significant encoding complexity, which brings the need to realize fast encoder with comparable Rate Distortion (RD) performance. In this paper, we propose to optimize the VVC complexity at intra-frame prediction, with a two-stage framework of deep feature fusion and probability estimation. At the first stage, we employ the deep convolutional network to extract the spatialtemporal neighboring coding features. Then we fuse all reference features obtained by different convolutional kernels to determine an optimal intra coding depth. At the second stage, we employ a probability-based model and the spatial-temporal coherence to select the candidate partition modes within the optimal coding depth. Finally, these selected depths and partitions are executed whilst unnecessary computations are excluded. Experimental results on standard database demonstrate the superiority of proposed method, especially for High Definition (HD) and Ultra-HD (UHD) video sequences.Comment: 10 pages, 10 figure

    Quality of Experience (QoE)-Aware Fast Coding Unit Size Selection for HEVC Intra-prediction

    Get PDF
    The exorbitant increase in the computational complexity of modern video coding standards, such as High Efficiency Video Coding (HEVC), is a compelling challenge for resource-constrained consumer electronic devices. For instance, the brute force evaluation of all possible combinations of available coding modes and quadtree-based coding structure in HEVC to determine the optimum set of coding parameters for a given content demand a substantial amount of computational and energy resources. Thus, the resource requirements for real time operation of HEVC has become a contributing factor towards the Quality of Experience (QoE) of the end users of emerging multimedia and future internet applications. In this context, this paper proposes a content-adaptive Coding Unit (CU) size selection algorithm for HEVC intra-prediction. The proposed algorithm builds content-specific weighted Support Vector Machine (SVM) models in real time during the encoding process, to provide an early estimate of CU size for a given content, avoiding the brute force evaluation of all possible coding mode combinations in HEVC. The experimental results demonstrate an average encoding time reduction of 52.38%, with an average Bjøntegaard Delta Bit Rate (BDBR) increase of 1.19% compared to the HM16.1 reference encoder. Furthermore, the perceptual visual quality assessments conducted through Video Quality Metric (VQM) show minimal visual quality impact on the reconstructed videos of the proposed algorithm compared to state-of-the-art approaches
    • …
    corecore