387 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    Optical Synchronization of Time-of-Flight Cameras

    Get PDF
    Time-of-Flight (ToF)-Kameras erzeugen Tiefenbilder (3D-Bilder), indem sie Infrarotlicht aussenden und die Zeit messen, bis die Reflexion des Lichtes wieder empfangen wird. Durch den Einsatz mehrerer ToF-Kameras können ihre vergleichsweise geringere Auflösungen überwunden, das Sichtfeld vergrößert und Verdeckungen reduziert werden. Der gleichzeitige Betrieb birgt jedoch die Möglichkeit von Störungen, die zu fehlerhaften Tiefenmessungen führen. Das Problem der gegenseitigen Störungen tritt nicht nur bei Mehrkamerasystemen auf, sondern auch wenn mehrere unabhängige ToF-Kameras eingesetzt werden. In dieser Arbeit wird eine neue optische Synchronisation vorgestellt, die keine zusätzliche Hardware oder Infrastruktur erfordert, um ein Zeitmultiplexverfahren (engl. Time-Division Multiple Access, TDMA) für die Anwendung mit ToF-Kameras zu nutzen, um so die Störungen zu vermeiden. Dies ermöglicht es einer Kamera, den Aufnahmeprozess anderer ToF-Kameras zu erkennen und ihre Aufnahmezeiten schnell zu synchronisieren, um störungsfrei zu arbeiten. Anstatt Kabel zur Synchronisation zu benötigen, wird nur die vorhandene Hardware genutzt, um eine optische Synchronisation zu erreichen. Dazu wird die Firmware der Kamera um das Synchronisationsverfahren erweitert. Die optische Synchronisation wurde konzipiert, implementiert und in einem Versuchsaufbau mit drei ToF-Kameras verifiziert. Die Messungen zeigen die Wirksamkeit der vorgeschlagenen optischen Synchronisation. Während der Experimente wurde die Bildrate durch das zusätzliche Synchronisationsverfahren lediglich um etwa 1 Prozent reduziert.Time-of-Flight (ToF) cameras produce depth images (three-dimensional images) by measuring the time between the emission of infrared light and the reception of its reflection. A setup of multiple ToF cameras may be used to overcome their comparatively low resolution, increase the field of view, and reduce occlusion. However, the simultaneous operation of multiple ToF cameras introduces the possibility of interference resulting in erroneous depth measurements. The problem of interference is not only related to a collaborative multicamera setup but also to multiple ToF cameras operating independently. In this work, a new optical synchronization for ToF cameras is presented, requiring no additional hardware or infrastructure to utilize a time-division multiple access (TDMA) scheme to mitigate interference. It effectively enables a camera to sense the acquisition process of other ToF cameras and rapidly synchronizes its acquisition times to operate without interference. Instead of requiring cables to synchronize, only the existing hardware is utilized to enable an optical synchronization. To achieve this, the camera’s firmware is extended with the synchronization procedure. The optical synchronization has been conceptualized, implemented, and verified with an experimental setup deploying three ToF cameras. The measurements show the efficacy of the proposed optical synchronization. During the experiments, the frame rate was reduced by only about 1% due to the synchronization procedure

    Architecture and Advanced Electronics Pathways Toward Highly Adaptive Energy- Efficient Computing

    Get PDF
    With the explosion of the number of compute nodes, the bottleneck of future computing systems lies in the network architecture connecting the nodes. Addressing the bottleneck requires replacing current backplane-based network topologies. We propose to revolutionize computing electronics by realizing embedded optical waveguides for onboard networking and wireless chip-to-chip links at 200-GHz carrier frequency connecting neighboring boards in a rack. The control of novel rate-adaptive optical and mm-wave transceivers needs tight interlinking with the system software for runtime resource management
    corecore