2,803 research outputs found

    Psychobiological factors of resilience and depression in late life.

    Get PDF
    In contrast to traditional perspectives of resilience as a stable, trait-like characteristic, resilience is now recognized as a multidimentional, dynamic capacity influenced by life-long interactions between internal and environmental resources. We review psychosocial and neurobiological factors associated with resilience to late-life depression (LLD). Recent research has identified both psychosocial characteristics associated with elevated LLD risk (e.g., insecure attachment, neuroticism) and psychosocial processes that may be useful intervention targets (e.g., self-efficacy, sense of purpose, coping behaviors, social support). Psychobiological factors include a variety of endocrine, genetic, inflammatory, metabolic, neural, and cardiovascular processes that bidirectionally interact to affect risk for LLD onset and course of illness. Several resilience-enhancing intervention modalities show promise for the prevention and treatment of LLD, including cognitive/psychological or mind-body (positive psychology; psychotherapy; heart rate variability biofeedback; meditation), movement-based (aerobic exercise; yoga; tai chi), and biological approaches (pharmacotherapy, electroconvulsive therapy). Additional research is needed to further elucidate psychosocial and biological factors that affect risk and course of LLD. In addition, research to identify psychobiological factors predicting differential treatment response to various interventions will be essential to the development of more individualized and effective approaches to the prevention and treatment of LLD

    Predictors of gait speed and its change over three years in community-dwelling older people

    Get PDF
    We aimed to assess whether and how changes in brain volume and increases in white matter hyperintensity (WMH) volume over three years predict gait speed and its change independently of demographics, vascular risk factors and physical status. We analyzed 443 individuals from the Lothian Birth Cohort 1936, at mean age 73 and 76 years. Gait speed at age 76 was predicted by age, grip strength and body mass index at mean age 73, three-year brain volume decrease and WMH volume increase, explaining 26.1% of variance. Decline in gait speed to age 76 was predicted by the same five variables explaining 40.9% of variance. In both analyses, grip strength and body mass index explained the most variance. A clinically significant decline in gait speed (≥ 0.1 m/s per year) occurred in 24.4%. These individuals had more structural brain changes. Brain volume and WMH changes were independent predictors of gait dysfunction and its three-year change, but the impact of malleable physical factors such as grip strength or body mass index was greater

    APOE genotype and entorhinal cortex volume in non-demented community-dwelling adults in midlife and early old age

    Get PDF
    Copyright © 2012 IOS PressThis article has been made available through the Brunel Open Access Publishing Fund.The apolipoprotein E (APOE) ε4 allele is a risk factor for the neuropathological decline accompanying Alzheimer's disease (AD) while, conversely, the ε2 allele offers protection. One of the brain structures exhibiting the earliest changes associated with the disease is the entorhinal cortex. We therefore investigated the volumes of the entorhinal cortex and other structures in the medial temporal lobe including the parahippocampal gyrus, temporal pole, and inferior, middle, and superior temporal cortices, in relation to APOE genotype. Our main objectives were to determine if (a) volumes systematically varied according to allele in a stepwise fashion, ε2 > ε3 > ε4, and (b) associations varied according to age. We investigate this association in 627 non-demented community-dwelling adults in middle age (44 to 48 years; n = 314) and older age (64 to 68 years; n = 313) who underwent structural MRI scans. We found no evidence of APOE-related variation in brain volumes in the age groups examined. We conclude that if a ε2 > ε3 > ε4 pattern in brain volumes does emerge in non-demented adults living in the community in old age, it is not until after the age of 68 years.This study was funded by the UK Leverhulme Trust, the British Academy, the NHMRC Research Fellowship No. 471501, the NHMRC Research Fellowship No.#1002560, the National Health and Medical Research Council of Australia Unit Grant No. 973302, Program Grant No. 179805, Project grant No. 157125; Program grant no. 350833, and the National Computational Infrastructure. This article is made available through the Brunel Open Access Publishing Fund

    Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain size is associated with cognitive ability in adulthood (correlation ~ .3), but few studies have investigated the relationship in normal ageing, particularly beyond age 75 years. With age both brain size and fluid-type intelligence decline, and regional atrophy is often suggested as causing decline in specific cognitive abilities. However, an association between brain size and intelligence may be due to the persistence of this relationship from earlier life.</p> <p>Methods</p> <p>We recruited 107 community-dwelling volunteers (29% male) aged 75–81 years for cognitive testing and neuroimaging. We used principal components analysis to derived a 'general cognitive factor' (g) from tests of fluid-type ability. Using semi-automated analysis, we measured whole brain volume, intracranial area (ICA) (an estimate of maximal brain volume), and volume of frontal and temporal lobes, amygdalo-hippocampal complex, and ventricles. Brain atrophy was estimated by correcting WBV for ICA.</p> <p>Results</p> <p>Whole brain volume (WBV) correlated with general cognitive ability (g) (r = .21, P < .05). Statistically significant associations between brain areas and specific cognitive abilities became non-significant when corrected for maximal brain volume (estimated using ICA), i.e. there were no statistically significant associations between atrophy and cognitive ability. The association between WBV and g was largely attenuated (from .21 to .03: i.e. attenuating the variance by 98%) by correcting for ICA. ICA accounted for 6.2% of the variance in g in old age, whereas atrophy accounted for < 1%.</p> <p>Conclusion</p> <p>The association between brain regions and specific cognitive abilities in community dwelling people of older age is due to the life-long association between whole brain size and general cognitive ability, rather than atrophy of specific regions. Researchers and clinicians should therefore be cautious of interpreting global or regional brain atrophy on neuroimaging as contributing to cognitive status in older age without taking into account prior mental ability and brain size.</p

    Youthful Processing Speed in Older Adults: Genetic, Biological, and Behavioral Predictors of Cognitive Processing Speed Trajectories in Aging.

    Get PDF
    Objective: To examine the impact of genetic, inflammatory, cardiovascular, lifestyle, and neuroanatomical factors on cognitive processing speed (CPS) change over time in functionally intact older adults. Methods: This observational study conducted over two time points, included 120 community dwelling cognitively normal older adults between the ages of 60 and 80 from the University of California San Francisco Memory and Aging Center. Participants were followed with composite measures of CPS, calculated based on norms for 20-30 year-olds. Variables of interest were AD risk genes (APOE, CR1), markers of inflammation (interleukin 6) and cardiovascular health (BMI, LDL, HDL, mean arterial pressure, fasting insulin), self-reported physical activity, and corpus callosum (CC) volumes. The sample was divided into three groups: 17 "resilient-agers" with fast and stable processing speed; 56 "average-agers" with average and stable processing speed; and 47 "sub-agers" with average baseline speed who were slower at follow-up. Results: Resilient-agers had larger baseline CC volumes than sub-agers (p &lt; 0.05). Resilient-agers displayed lower levels of interleukin-6 (IL-6) and insulin (ps &lt; 0.05) than sub-agers, and reported more physical activity than both average- and sub-agers (ps &lt; 0.01). In a multinomial logistic regression, physical activity and IL-6 predicted average- and sub-ager groups. Resilient-agers displayed a higher frequency of APOE e4 and CR1 AA/AG alleles. Conclusion: Robust and stable CPS is associated with larger baseline CC volumes, lower levels of inflammation and insulin, and greater self-reported physical activity. These findings highlight the relevance of neuroanatomical, biological, and lifestyle factors in the identification and prediction of heterogeneous cognitive aging change over time
    corecore