6,372 research outputs found

    A Logical Approach to Multilevel Security of Probabilistic Systems

    Full text link

    The Quest for Scalability and Accuracy in the Simulation of the Internet of Things: an Approach based on Multi-Level Simulation

    Full text link
    This paper presents a methodology for simulating the Internet of Things (IoT) using multi-level simulation models. With respect to conventional simulators, this approach allows us to tune the level of detail of different parts of the model without compromising the scalability of the simulation. As a use case, we have developed a two-level simulator to study the deployment of smart services over rural territories. The higher level is base on a coarse grained, agent-based adaptive parallel and distributed simulator. When needed, this simulator spawns OMNeT++ model instances to evaluate in more detail the issues concerned with wireless communications in restricted areas of the simulated world. The performance evaluation confirms the viability of multi-level simulations for IoT environments.Comment: Proceedings of the IEEE/ACM International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017

    Modelling and Design of Resilient Networks under Challenges

    Get PDF
    Communication networks, in particular the Internet, face a variety of challenges that can disrupt our daily lives resulting in the loss of human lives and significant financial costs in the worst cases. We define challenges as external events that trigger faults that eventually result in service failures. Understanding these challenges accordingly is essential for improvement of the current networks and for designing Future Internet architectures. This dissertation presents a taxonomy of challenges that can help evaluate design choices for the current and Future Internet. Graph models to analyse critical infrastructures are examined and a multilevel graph model is developed to study interdependencies between different networks. Furthermore, graph-theoretic heuristic optimisation algorithms are developed. These heuristic algorithms add links to increase the resilience of networks in the least costly manner and they are computationally less expensive than an exhaustive search algorithm. The performance of networks under random failures, targeted attacks, and correlated area-based challenges are evaluated by the challenge simulation module that we developed. The GpENI Future Internet testbed is used to conduct experiments to evaluate the performance of the heuristic algorithms developed

    Optimizing Interconnectivity among Networks under Attacks

    Get PDF
    Networks may need to be interconnected for various reasons such as inter-organizational communication, redundant connectivity, increasing data-rate and minimizing delay or packet-loss, etc. However, the trustworthiness of an added interconnection link cannot be taken for granted due to the presence of attackers who may compromise the security of an interconnected network by intercepting the interconnections. Namely, an intercepted interconnection link may not be secured due to the data manipulations by attackers. In the first part of this dissertation, the number of interconnections between the two networks is optimized for maximizing the data-rate and minimizing the packet-loss under the threat of security attacks. The optimization of the interconnectivity considering the security attack is formulated using a rate-distortion optimization setting, as originally introduced by Claude E. Shannon in the information theory. In particular, each intercepted interconnection is modeled as a noisy communication channel where the attackers may manipulate the data by flipping and erasing of data bits, and then the total capacity for any given number of interconnections is calculated. By exploiting such formulation, the optimal number of interconnections between two networks is found under network administrators data-rate and packet-loss requirement, and most importantly, without compromising the data security. It is concluded analytically and verified by simulations under certain conditions, increasing interconnections beyond an optimal number would not be beneficial concerning the data-rates and packet-loss. In the second part of this dissertation, the vulnerability of the interconnected network is analyzed by a probabilistic model that maps the intensity of physical attacks to network component failure distributions. Also, assuming the network is susceptible to the attack propagation, the resiliency of the network is modeled by the influence model and epidemic model. Finally, a stochastic model is proposed to track the node failure dynamics in a network considering dependency with power failures. Besides, the cascading failure in the power grid is analyzed with a data-driven model that reproduces the evolution of power-transmission line failure in power grids. To summarize, the optimal interconnectivity among networks is analyzed under security attacks, and the dynamic interactions in an interconnected network are investigated under various physical and logical attacks. The proper application of this work would add the minimum number of inter-network connections between two networks without compromising the data security. The optimal number interconnections would meet network administrator’s requirement and minimize cost (both security and monetary) associated with unnecessary connections. This work can also be used to estimate the reliability of a communication network under different types of physical attacks independently and also by incorporating the dynamics of power failures

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    • …
    corecore