18,257 research outputs found

    Syntactic Computation as Labelled Deduction: WH a case study

    Get PDF
    This paper addresses the question "Why do WH phenomena occur with the particular cluster of properties observed across languages -- long-distance dependencies, WH-in situ, partial movement constructions, reconstruction, crossover etc." These phenomena have been analysed by invoking a number of discrete principles and categories, but have so far resisted a unified treatment. The explanation proposed is set within a model of natural language understanding in context, where the task of understanding is taken to be the incremental building of a structure over which the semantic content is defined. The formal model is a composite of a labelled type-deduction system, a modal tree logic, and a set of rules for describing the process of interpreting the string as a set of transition states. A dynamic concept of syntax results, in which in addition to an output structure associated with each string (analogous to the level of LF), there is in addition an explicit meta-level description of the process whereby this incremental process takes place. This paper argues that WH-related phenomena can be unified by adopting this dynamic perspective. The main focus of the paper is on WH-initial structures, WH in situ structures, partial movement phenomena, and crossover phenomena. In each case, an analysis is proposed which emerges from the general characterisatioan of WH structures without construction-specific stipulation.Articl

    Quantum Picturalism

    Full text link
    The quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. In this review we present steps towards a diagrammatic `high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. It allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports `automation'. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly recent development in mathematics. These monoidal categories do not only provide a natural foundation for physical theories, but also for proof theory, logic, programming languages, biology, cooking, ... The challenge is to discover the necessary additional pieces of structure that allow us to predict genuine quantum phenomena.Comment: Commissioned paper for Contemporary Physics, 31 pages, 84 pictures, some colo

    Scrambling in German and Japanese: adjunction versus multiple specifiers

    Get PDF
    This paper argues that short (clause-internal) scrambling to a pre-subject position has A properties in Japanese but A'-properties in German, while long scrambling (scrambling across sentence boundaries) from finite clauses, which is possible in Japanese but not in German, has A'-properties throughout. It is shown that these differences between German and Japanese can be traced back to parametric variation of phrase structure and the parameterized properties of functional heads. Due to the properties of Agreement, sentences in Japanese may contain multiple (Agro- and Agrs-) specifiers whereas German does not allow for this. In Japanese, a scrambled element may be located in a Spec AgrP, i.e. an A- or L-related position, whereas scrambled NPs in German can only appear in an AgrP-adjoined (broadly-L-related) position, which only has A'-properties. Given our assumption that successive cyclic adjunction is generally impossible, elements in German may not be long scrambled because a scrambled element that is moved to an adjunction site inside an embedded clause may not move further. In Japanese, long distance scrambling out of finite CPs is possible since scrambling may proceed in a successive cyclic manner via embedded Spec- (AgrP) positions. Our analysis of the differences between German and Japanese scrambling provides us with an account of further contrasts between the two languages such as the existence of surprising asymmetries between German and Japanese remnant-movement phenomena, and the fact that unlike German, Japanese freely allows wh-scrambling. Investigation of the properties of Japanese wh-movement also leads us to the formulation of the "Wh-cluster Hypothesis", which implies that Japanese is an LF multiple wh-fronting language

    Reflexives and reciprocals in LTAG

    Get PDF
    This paper presents an LTAG analysis of reflexives like himself and reciprocals like each other. These items need to find a c-commanding antecedent from which they retrieve (part of) their own denotation and with which they syntactically agree. The relation between anaphoric item and antecendent must satisfy the following important locality conditions (Chomsky (1981))

    Component Composition in Business and System Modelling

    Get PDF
    Bespoke development of large business systems can be couched in terms of the composition of components, which are, put simply, chunks of development work. Design, mapping a specification to an implementation, can also be expressed in terms of components: a refinement comprising an abstract component, a concrete component and a mapping between them. Similarly, system extension is the composition of an existing component, the legacy system, with a new component, the extension. This paper overviews work being done on a UK EPSRC funded research project formulating and formalizing techniques for describing, composing and performing integrity checks on components. Although the paper focuses on the specification and development of information systems, the techniques are equally applicable to the modeling and re-engineering of businesses, where no computer system may be involved

    Operational theories and Categorical quantum mechanics

    Full text link
    A central theme in current work in quantum information and quantum foundations is to see quantum mechanics as occupying one point in a space of possible theories, and to use this perspective to understand the special features and properties which single it out, and the possibilities for alternative theories. Two formalisms which have been used in this context are operational theories, and categorical quantum mechanics. The aim of the present paper is to establish strong connections between these two formalisms. We show how models of categorical quantum mechanics have representations as operational theories. We then show how nonlocality can be formulated at this level of generality, and study a number of examples from this point of view, including Hilbert spaces, sets and relations, and stochastic maps. The local, quantum, and no-signalling models are characterized in these terms.Comment: 37 pages, updated bibliograph

    Sanakielet ja lokaalisuus

    Get PDF
    In this master's thesis we study the generalization of word languages into multi-dimensional arrays of letters i.e picture languages. Our main interest is the class of recognizable picture languages which has many properties in common with the robust class of regular word languages. After surveying the basic properties of picture languages, we present a logical characterization of recognizable picture languages—a generalization of BĂŒchi's theorem of word languages into pictures, namely that the class of recognizable picture languages is the one recognized by existential monadic second-order logic. The proof presented is a recent one that makes the relation between tilings and logic clear in the proof. By way of the proof we also study the locality of the model theory of picture structures through logical locality obtained by normalization of EMSO on those structures. A continuing theme in the work is also to compare automata and recognizability between word and picture languages. In the fourth section we briefly look at topics related to computativity and computational complexity of recognizable picture languages

    Variable binding, symmetric monoidal closed theories, and bigraphs

    Get PDF
    This paper investigates the use of symmetric monoidal closed (SMC) structure for representing syntax with variable binding, in particular for languages with linear aspects. In our setting, one first specifies an SMC theory T, which may express binding operations, in a way reminiscent from higher-order abstract syntax. This theory generates an SMC category S(T) whose morphisms are, in a sense, terms in the desired syntax. We apply our approach to Jensen and Milner's (abstract binding) bigraphs, which are linear w.r.t. processes. This leads to an alternative category of bigraphs, which we compare to the original.Comment: An introduction to two more technical previous preprints. Accepted at Concur '0
    • 

    corecore