259 research outputs found

    Forecasting Long-Term Government Bond Yields: An Application of Statistical and AI Models

    Get PDF
    This paper evaluates several artificial intelligence and classical algorithms on their ability of forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic indicators. Due to the complexity of the prediction problem, the task represents a challenging test for the algorithms under evaluation. At the same time, the study is of particular significance for the important and paradigmatic role played by the US market in the world economy. Four data-driven artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron model. Their performance is compared with the performance of two classical approaches, namely, a statistical ARIMA model and an econometric error correction model. The algorithms are evaluated on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the best results are obtained by the three parametric regression algorithms, namely the econometric, the statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map model gives an unsatisfactory performance. Analysis of the results indicates that the econometric model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in interest rates. Overall, the prediction accuracy of the best models is only marginally better than the prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the modelling task and, in general, the difficulty of building reliable predictors for financial markets.interest rates; forecasting; neural networks; fuzzy logic.

    The development of hybrid intelligent systems for technical analysis based equivolume charting

    Get PDF
    This dissertation proposes the development of a hybrid intelligent system applied to technical analysis based equivolume charting for stock trading. A Neuro-Fuzzy based Genetic Algorithms (NF-GA) system of the Volume Adjusted Moving Average (VAMA) membership functions is introduced to evaluate the effectiveness of using a hybrid intelligent system that integrates neural networks, fuzzy logic, and genetic algorithms techniques for increasing the efficiency of technical analysis based equivolume charting for trading stocks --Introduction, page 1

    Forecasting long-term government bond yields: an application of statistical and ai models

    Get PDF
    This paper evaluates several artificial intelligence and classical algorithms on their ability of forecasting the monthly yield of the US 10-year Treasury bonds from a set of four economic indicators. Due to the complexity of the prediction problem, the task represents a challenging test for the algorithms under evaluation. At the same time, the study is of particular significance for the important and paradigmatic role played by the US market in the world economy. Four data-driven artificial intelligence approaches are considered, namely, a manually built fuzzy logic model, a machine learned fuzzy logic model, a self-organising map model and a multi-layer perceptron model. Their performance is compared with the performance of two classical approaches, namely, a statistical ARIMA model and an econometric error correction model. The algorithms are evaluated on a complete series of end-month US 10-year Treasury bonds yields and economic indicators from 1986:1 to 2004:12. In terms of prediction accuracy and reliability of the modelling procedure, the best results are obtained by the three parametric regression algorithms, namely the econometric, the statistical and the multi-layer perceptron model. Due to the sparseness of the learning data samples, the manual and the automatic fuzzy logic approaches fail to follow with adequate precision the range of variations of the US 10-year Treasury bonds. For similar reasons, the self-organising map model gives an unsatisfactory performance. Analysis of the results indicates that the econometric model has a slight edge over the statistical and the multi-layer perceptron models. This suggests that pure data-driven induction may not fully capture the complicated mechanisms ruling the changes in interest rates. Overall, the prediction accuracy of the best models is only marginally better than the prediction accuracy of a basic one-step lag predictor. This result highlights the difficulty of the modelling task and, in general, the difficulty of building reliable predictors for financial markets

    Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences

    Get PDF
    Mathematical fuzzy logic (MFL) specifically targets many-valued logic and has significantly contributed to the logical foundations of fuzzy set theory (FST). It explores the computational and philosophical rationale behind the uncertainty due to imprecision in the backdrop of traditional mathematical logic. Since uncertainty is present in almost every real-world application, it is essential to develop novel approaches and tools for efficient processing. This book is the collection of the publications in the Special Issue “Mathematical Fuzzy Logic in the Emerging Fields of Engineering, Finance, and Computer Sciences”, which aims to cover theoretical and practical aspects of MFL and FST. Specifically, this book addresses several problems, such as:- Industrial optimization problems- Multi-criteria decision-making- Financial forecasting problems- Image processing- Educational data mining- Explainable artificial intelligence, etc

    Neuro-Fuzzy Based Intelligent Approaches to Nonlinear System Identification and Forecasting

    Get PDF
    Nearly three decades back nonlinear system identification consisted of several ad-hoc approaches, which were restricted to a very limited class of systems. However, with the advent of the various soft computing methodologies like neural networks and the fuzzy logic combined with optimization techniques, a wider class of systems can be handled at present. Complex systems may be of diverse characteristics and nature. These systems may be linear or nonlinear, continuous or discrete, time varying or time invariant, static or dynamic, short term or long term, central or distributed, predictable or unpredictable, ill or well defined. Neurofuzzy hybrid modelling approaches have been developed as an ideal technique for utilising linguistic values and numerical data. This Thesis is focused on the development of advanced neurofuzzy modelling architectures and their application to real case studies. Three potential requirements have been identified as desirable characteristics for such design: A model needs to have minimum number of rules; a model needs to be generic acting either as Multi-Input-Single-Output (MISO) or Multi-Input-Multi-Output (MIMO) identification model; a model needs to have a versatile nonlinear membership function. Initially, a MIMO Adaptive Fuzzy Logic System (AFLS) model which incorporates a prototype defuzzification scheme, while utilising an efficient, compared to the Takagi–Sugeno–Kang (TSK) based systems, fuzzification layer has been developed for the detection of meat spoilage using Fourier transform infrared (FTIR) spectroscopy. The identification strategy involved not only the classification of beef fillet samples in their respective quality class (i.e. fresh, semi-fresh and spoiled), but also the simultaneous prediction of their associated microbiological population directly from FTIR spectra. In the case of AFLS, the number of memberships for each input variable was directly associated to the number of rules, hence, the “curse of dimensionality” problem was significantly reduced. Results confirmed the advantage of the proposed scheme against Adaptive Neurofuzzy Inference System (ANFIS), Multilayer Perceptron (MLP) and Partial Least Squares (PLS) techniques used in the same case study. In the case of MISO systems, the TSK based structure, has been utilized in many neurofuzzy systems, like ANFIS. At the next stage of research, an Adaptive Fuzzy Inference Neural Network (AFINN) has been developed for the monitoring the spoilage of minced beef utilising multispectral imaging information. This model, which follows the TSK structure, incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. In this specific case study, AFINN model was also able to predict for the first time in the literature, the beef’s temperature directly from imaging information. Results again proved the superiority of the adopted model. By extending the line of research and adopting specific design concepts from the previous case studies, the Asymmetric Gaussian Fuzzy Inference Neural Network (AGFINN) architecture has been developed. This architecture has been designed based on the above design principles. A clustering preprocessing scheme has been applied to minimise the number of fuzzy rules. AGFINN incorporates features from the AFLS concept, by having the same number of rules as well as fuzzy memberships. In spite of the extensive use of the standard symmetric Gaussian membership functions, AGFINN utilizes an asymmetric function acting as input linguistic node. Since the asymmetric Gaussian membership function’s variability and flexibility are higher than the traditional one, it can partition the input space more effectively. AGFINN can be built either as an MISO or as an MIMO system. In the MISO case, a TSK defuzzification scheme has been implemented, while two different learning algorithms have been implemented. AGFINN has been tested on real datasets related to electricity price forecasting for the ISO New England Power Distribution System. Its performance was compared against a number of alternative models, including ANFIS, AFLS, MLP and Wavelet Neural Network (WNN), and proved to be superior. The concept of asymmetric functions proved to be a valid hypothesis and certainly it can find application to other architectures, such as in Fuzzy Wavelet Neural Network models, by designing a suitable flexible wavelet membership function. AGFINN’s MIMO characteristics also make the proposed architecture suitable for a larger range of applications/problems

    PENGATURAN LALU LINTAS MENGGUNAKAN ALGORITMA BEE COLONY DENGAN METODE FUZZY MAMDANI: Studi Kasus di Simpang Jalan Soekarno-Hatta Gedebage Kota Bandung

    Get PDF
    Penelitian ini bertujuan mengimplementasikan Algoritma Bee Colony dengan Metode Fuzzy Mamdani dalam pengaturan lalu lintas di simpang Jalan Soekarno Hatta-Gedebage Kota Bandung. Algoritma Bee Colony digunakan untuk pewarnaan simpul pada graf untuk menentukan fase arus lalu lintas di simpang jalan tersebut. Arus-arus kendaraan direpresentasikan sebagai simpul. Sisi yang menghubungkan dua simpul merepresentasikan arus yang tidak boleh berjalan bersamaan. Setelah didapatkannya fase lampu lalu lintas baru tanpa adanya tabrakan, maka langkah selanjutnya yang dilakukan adalah dengan mengatur durasi lampu lalu lintas pada setiap fasenya menggunakan Metode Fuzzy Mamdani berdasarkan data jumlah kendaraan yang berhenti saat lampu merah. Data penelitian diambil berdasarkan pengamatan langsung di lokasi yang didukung dengan data rekaman CCTV yang terdapat di keempat ruas jalan dan wawancara bersama polisi dan masyarakat yang tinggal di sekitar tempat penelitian. Hasil penelitian menunjukkan bahwa Simpang Jalan Soekarno Hatta-Gedebage Kota Bandung membutuhkan 4 fase lalu lintas dengan durasi lampu lalu lintas dengan lampu kuning 2 detik. Total durasi pada saat padat adalah 190.3 detik dan total durasi pada saat normal adalah 134 detik. Hasil tersebut menunjukkan bahwa banyaknya fase dan durasi lampu lalu lintas yang dibutuhkan persimpangan tersebut dapat dikurangi. Hasil ini diharapkan dapat memberi solusi alternatif bagi dinas terkait dan dapat meminimalkan risiko kecelakaan serta mengoptimalkan durasi lampu lalu lintas yang sebelumnya dirasa terlalu lama. This study aims to implement the Bee Colony Algorithm with the Fuzzy Mamdani Method for controling traffic at the Soekarno Hatta-Gedebage Intersection of Bandung City. Bee Colony algorithm is used to color the vertices on the graph to determine the phase of traffic flow at the intersection. Traffic flows are represented as nodes. The edge that connects two vertices represents as traffic flows that must not run at the same time. After obtaining a new traffic light phase without a collision, the next step is to adjust the duration of the traffic lights in each phase using the Fuzzy Mamdani method based on the number of vehicles that stop at a red light. The research data was collected based on direct observation at the location supported by CCTV recording data obtained in the four roads and interviews with the police and community who living around the research location. The computational results show that the Soekarno Hatta-Gedebage Intersection of Bandung City requires 4 traffic phases with a traffic light duration of 2 seconds. The total duration needed during bussy hours is 190.3 seconds and during normal times is 134 seconds. These results indicate that the number of phases and duration of traffic lights required at the intersection can be reduced. We can use the results as the alternative solutions for related agencies in order to minimize the risk of accidents and optimize the duration of traffic lights that were previously considered too long

    Fuzzy Inference Systems for Risk Appraisal in Military Operational Planning

    Get PDF
    Advances in computing and mathematical techniques have given rise to increasingly complex models employed in the management of risk across numerous disciplines. While current military doctrine embraces sound practices for identifying, communicating, and mitigating risk, the complex nature of modern operational environments prevents the enumeration of risk factors and consequences necessary to leverage anything beyond rudimentary risk models. Efforts to model military operational risk in quantitative terms are stymied by the interaction of incomplete, inadequate, and unreliable knowledge. Specifically, it is evident that joint and inter-Service literature on risk are inconsistent, ill-defined, and prescribe imprecise approaches to codifying risk. Notably, the near-ubiquitous use of risk matrices (along with other qualitative methods), are demonstrably problematic at best, and downright harmful at worst, due to misunderstanding and misapplication of their quantitative implications. The use of fuzzy set theory is proposed to overcome the pervasive ambiguity of risk modeling encountered by today’s operational planners. Fuzzy logic is adept at addressing the problems caused by imperfect and imprecise knowledge, entangled causal relationships, and the linguistic input of expert opinion. To this end, a fuzzy inference system is constructed for the purpose of risk appraisal in military operational planning

    SINVLIO: using semantics and fuzzy logic to provide individual investment portfolio recommendations

    Get PDF
    Portfolio selection addresses the problem of how to diversify investments in the most efficient and profitable way possible. Portfolio selection is a field of study that has been broached from several perspectives, including, among others, recommender systems. This paper presents SINVLIO (Semantic INVestment portfoLIO), a tool based on semantic technologies and fuzzy logic techniques that recommends investments grounded in both psychological aspects of the investor and traditional financial parameters of the investments. The results are very encouraging and reveal that SINVLIO makes good recommendations, according to the high degree of agreement between SINVLIO and expert recommendationsThis work is supported by the Spanish Ministry of Industry, Tourism, and Commerce under the projects SONAR2 (TSI-020100-2008-665) and the Spanish Ministry of Science and Innovation under the project “FINANCIAL LINKED OPEN DATA REASONING AND MANAGEMENT FOR WEB SCIENCE” (TIN2011-27405).Publicad

    Forecasting the stock market index using artificial intelligence techniques

    Get PDF
    The weak form of Efficient Market hypothesis (EMH) states that it is impossible to forecast the future price of an asset based on the information contained in the historical prices of an asset. This means that the market behaves as a random walk and as a result makes forecasting impossible. Furthermore, financial forecasting is a difficult task due to the intrinsic complexity of the financial system. The objective of this work was to use artificial intelligence (AI) techniques to model and predict the future price of a stock market index. Three artificial intelligence techniques, namely, neural networks (NN), support vector machines and neuro-fuzzy systems are implemented in forecasting the future price of a stock market index based on its historical price information. Artificial intelligence techniques have the ability to take into consideration financial system complexities and they are used as financial time series forecasting tools. Two techniques are used to benchmark the AI techniques, namely, Autoregressive Moving Average (ARMA) which is linear modelling technique and random walk (RW) technique. The experimentation was performed on data obtained from the Johannesburg Stock Exchange. The data used was a series of past closing prices of the All Share Index. The results showed that the three techniques have the ability to predict the future price of the Index with an acceptable accuracy. All three artificial intelligence techniques outperformed the linear model. However, the random walk method outperfomed all the other techniques. These techniques show an ability to predict the future price however, because of the transaction costs of trading in the market, it is not possible to show that the three techniques can disprove the weak form of market efficiency. The results show that the ranking of performances support vector machines, neuro-fuzzy systems, multilayer perceptron neural networks is dependent on the accuracy measure used
    • 

    corecore