20,195 research outputs found

    Robot control based on qualitative representation of human trajectories

    Get PDF
    A major challenge for future social robots is the high-level interpretation of human motion, and the consequent generation of appropriate robot actions. This paper describes some fundamental steps towards the real-time implementation of a system that allows a mobile robot to transform quantitative information about human trajectories (i.e. coordinates and speed) into qualitative concepts, and from these to generate appropriate control commands. The problem is formulated using a simple version of qualitative trajectory calculus, then solved using an inference engine based on fuzzy temporal logic and situation graph trees. Preliminary results are discussed and future directions of the current research are drawn

    Qualitative design and implementation of human-robot spatial interactions

    Get PDF
    Despite the large number of navigation algorithms available for mobile robots, in many social contexts they often exhibit inopportune motion behaviours in proximity of people, often with very "unnatural" movements due to the execution of segmented trajectories or the sudden activation of safety mechanisms (e.g., for obstacle avoidance). We argue that the reason of the problem is not only the difficulty of modelling human behaviours and generating opportune robot control policies, but also the way human-robot spatial interactions are represented and implemented. In this paper we propose a new methodology based on a qualitative representation of spatial interactions, which is both flexible and compact, adopting the well-defined and coherent formalization of Qualitative Trajectory Calculus (QTC). We show the potential of a QTC-based approach to abstract and design complex robot behaviours, where the desired robot's behaviour is represented together with its actual performance in one coherent approach, focusing on spatial interactions rather than pure navigation problems

    Employing dynamic fuzzy membership functions to assess environmental performance in the supplier selection process

    Get PDF
    The proposed system illustrates that logic fuzzy can be used to aid management in assessing a supplier's environmental performance in the supplier selection process. A user-centred hierarchical system employing scalable fuzzy membership functions implement human priorities in the supplier selection process, with particular focus on a supplier's environmental performance. Traditionally, when evaluating supplier performance, companies have considered criteria such as price, quality, flexibility, etc. These criteria are of varying importance to individual companies pertaining to their own specific objectives. However, with environmental pressures increasing, many companies have begun to give more attention to environmental issues and, in particular, to their suppliers’ environmental performance. The framework presented here was developed to introduce efficiently environmental criteria into the existing supplier selection process and to reflect on its relevant importance to individual companies. The system presented attempts to simulate the human preference given to particular supplier selection criteria with particular focus on environmental issues when considering supplier selection. The system considers environmental data from multiple aspects of a suppliers business, and based on the relevant impact this will have on a Buying Organization, a decision is reached on the suitability of the supplier. This enables a particular supplier's strengths and weaknesses to be considered as well as considering their significance and relevance to the Buying OrganizationPeer reviewe

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Peirce's sign theory as an open-source R package.

    Get PDF
    Throughout Peirce’s writing, we witness his developing vision of a machine that scientists will eventually be able to create. Nadin (2010) raised the question:Why do computer scientists continue to ignore Peirce’s sign theory? A review of the literature on Peirce’s theory and the semiotics machine reveals that many authors discussed the machine;however, they donot differentiate between a physical computer machine and its software. This paper discusses the problematic issues involved in converting Peirce’s theory into a programming language, machine and software application. We demonstrate this challenge by introducing Peirce’s sign theory as a software application that runs under an open-source R environmen
    corecore