60 research outputs found

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin

    Some Lower Bounds in Parameterized AC^0

    Get PDF
    We demonstrate some lower bounds for parameterized problems via parameterized classes corresponding to the classical AC^0. Among others, we derive such a lower bound for all fpt-approximations of the parameterized clique problem and for a parameterized halting problem, which recently turned out to link problems of computational complexity, descriptive complexity, and proof theory. To show the first lower bound, we prove a strong AC^0 version of the planted clique conjecture: AC^0-circuits asymptotically almost surely can not distinguish between a random graph and this graph with a randomly planted clique of any size <= n^xi (where 0 <= xi < 1)

    A parameterized halting problem, the linear time hierarchy, and the MRDP theorem

    Get PDF
    The complexity of the parameterized halting problem for nondeterministic Turing machines p-Halt is known to be related to the question of whether there are logics capturing various complexity classes [10]. Among others, if p-Halt is in para-AC0, the parameterized version of the circuit complexity class AC0, then AC0, or equivalently, (+, x)-invariant FO, has a logic. Although it is widely believed that p-Halt ∉. para-AC0, we show that the problem is hard to settle by establishing a connection to the question in classical complexity of whether NE ⊈ LINH. Here, LINH denotes the linear time hierarchy. On the other hand, we suggest an approach toward proving NE ⊈ LINH using bounded arithmetic. More specifically, we demonstrate that if the much celebrated MRDP (for Matiyasevich-Robinson-Davis-Putnam) theorem can be proved in a certain fragment of arithmetic, then NE ⊈ LINH. Interestingly, central to this result is a para-AC0 lower bound for the parameterized model-checking problem for FO on arithmetical structures.Peer ReviewedPostprint (author's final draft

    On slicewise monotone parameterized problems and optimal proof systems for TAUT

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"

    On p-optimal proof systems and logics for PTIME

    Get PDF
    "Vegeu el resum a l'inici del document del fitxer adjunt"

    Speedup for Natural Problems and Noncomputability

    Get PDF
    A resource-bounded version of the statement "no algorithm recognizes all non-halting Turing machines" is equivalent to an infinitely often (i.o.) superpolynomial speedup for the time required to accept any coNP-complete language and also equivalent to a superpolynomial speedup in proof length in propositional proof systems for tautologies, each of which implies P!=NP. This suggests a correspondence between the properties 'has no algorithm at all' and 'has no best algorithm' which seems relevant to open problems in computational and proof complexity.Comment: 8 page

    Synthesis from Weighted Specifications with Partial Domains over Finite Words

    Get PDF
    info:eu-repo/semantics/publishe
    • …
    corecore