17,156 research outputs found

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality

    A PEER-TO-PEER FILE SHARING SYSTEM FOR WIRELESS AD-HOC NETWORKS

    Get PDF
    Cataloged from PDF version of article.In recent years, we have witnessed an increasing popularity of peer-to-peer (P2P) networks. Especially, file sharing applications aroused considerable interest of the Internet users and currently there exist several peer-to-peer file sharing systems that are functional on the Internet. In the mean time, recent developments in mobile devices and wireless communication technologies enabled personal digital assistants (PDA) to form ad-hoc networks in an easy and automated way. However, file sharing in wireless ad-hoc networks imposes many challenges that make conventional peer-to-peer systems operating on wire-line networks (i.e. Internet) inapplicable for this case. Information and workload distribution as well as routing are major problems for members of a wireless ad-hoc network, which are only aware of peers that are within their communication range. In this thesis, we propose a system that solves peer-to-peer file-sharing problem for wireless ad-hoc networks. Our system works according to principles of peer-to-peer systems, without requiring a central server, and distributes information regarding the location of shared files among members of the network. By means of constructing a distributed hash table (DHT) and forming a tree shaped overlay network based on the topology of the network itself, the system is able to answer location queries, and also discover and maintain routing information that is used to transfer files from a source-peer to another peer.Sözer , HasanM.S

    Lamred : location-aware and privacy preserving multi-layer resource discovery for IoT

    Get PDF
    The resources in the Internet of Things (IoT) network are distributed among different parts of the network. Considering huge number of IoT resources, the task of discovering them is challenging. While registering them in a centralized server such as a cloud data center is one possible solution, but due to billions of IoT resources and their limited computation power, the centralized approach leads to some efficiency and security issues. In this paper we proposed a location aware and decentralized multi layer model of resource discovery (LaMRD) in IoT. It allows a resource to be registered publicly or privately, and to be discovered in a decentralized scheme in the IoT network. LaMRD is based on structured peer-to-peer (p2p) scheme and follows the general system trend of fog computing. Our proposed model utilizes Distributed Hash Table (DHT) technology to create a p2p scheme of communication among fog nodes. The resources are registered in LaMRD based on their locations which results in a low added overhead in the registration and discovery processes. LaMRD generates a single overlay and it can be generated without specific organizing entity or location based devices. LaMRD guarantees some important security properties and it showed a lower latency comparing to the cloud based and decentralized resource discovery

    QoE in Pull Based P2P-TV Systems: Overlay Topology Design Tradeoff

    Get PDF
    Abstract—This paper presents a systematic performance anal-ysis of pull P2P video streaming systems for live applications, providing guidelines for the design of the overlay topology and the chunk scheduling algorithm. The contribution of the paper is threefold: 1) we propose a realistic simulative model of the system that represents the effects of access bandwidth heterogeneity, latencies, peculiar characteristics of the video, while still guaranteeing good scalability properties; 2) we propose a new latency/bandwidth-aware overlay topology design strategy that improves application layer performance while reducing the underlying transport network stress; 3) we investigate the impact of chunk scheduling algorithms that explicitly exploit properties of encoded video. Results show that our proposal jointly improves the actual Quality of Experience of users and reduces the cost the transport network has to support. I
    corecore