12,494 research outputs found

    A Bonferroni Mean Based Fuzzy K Nearest Centroid Neighbor Classifier

    Get PDF
    K-nearest neighbor (KNN) is an effective nonparametric classifier that determines the neighbors of a point based only on distance proximity. The classification performance of KNN is disadvantaged by the presence of outliers in small sample size datasets and its performance deteriorates on datasets with class imbalance. We propose a local Bonferroni Mean based Fuzzy K-Nearest Centroid Neighbor (BM-FKNCN) classifier that assigns class label of a query sample dependent on the nearest local centroid mean vector to better represent the underlying statistic of the dataset. The proposed classifier is robust towards outliers because the Nearest Centroid Neighborhood (NCN) concept also considers spatial distribution and symmetrical placement of the neighbors. Also, the proposed classifier can overcome class domination of its neighbors in datasets with class imbalance because it averages all the centroid vectors from each class to adequately interpret the distribution of the classes. The BM-FKNCN classifier is tested on datasets from the Knowledge Extraction based on Evolutionary Learning (KEEL) repository and benchmarked with classification results from the KNN, Fuzzy-KNN (FKNN), BM-FKNN and FKNCN classifiers. The experimental results show that the BM-FKNCN achieves the highest overall average classification accuracy of 89.86% compared to the other four classifiers

    Optimal Bayes Classifiers for Functional Data and Density Ratios

    Full text link
    Bayes classifiers for functional data pose a challenge. This is because probability density functions do not exist for functional data. As a consequence, the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections on a sequence of eigenfunctions that are common to the groups to be classified. The density ratios can then be factored into density ratios of individual functional principal components whence the classification problem is reduced to a sequence of nonparametric one-dimensional density estimates. This is an extension to functional data of some of the very earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behavior of the proposed classifiers in the large sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as "perfect classification". The proposed classifiers also perform favorably in finite sample applications, as we demonstrate in comparisons with other functional classifiers in simulations and various data applications, including wine spectral data, functional magnetic resonance imaging (fMRI) data for attention deficit hyperactivity disorder (ADHD) patients, and yeast gene expression data

    k-nearest neighbors prediction and classification for spatial data

    Full text link
    We propose a nonparametric predictor and a supervised classification based on the regression function estimate of a spatial real variable using k-nearest neighbors method (k-NN). Under some assumptions, we establish almost complete or sure convergence of the proposed estimates which incorporate a spatial proximity between observations. Numerical results on simulated and real fish data illustrate the behavior of the given predictor and classification method

    Nonparametrically consistent depth-based classifiers

    Full text link
    We introduce a class of depth-based classification procedures that are of a nearest-neighbor nature. Depth, after symmetrization, indeed provides the center-outward ordering that is necessary and sufficient to define nearest neighbors. Like all their depth-based competitors, the resulting classifiers are affine-invariant, hence in particular are insensitive to unit changes. Unlike the former, however, the latter achieve Bayes consistency under virtually any absolutely continuous distributions - a concept we call nonparametric consistency, to stress the difference with the stronger universal consistency of the standard kkNN classifiers. We investigate the finite-sample performances of the proposed classifiers through simulations and show that they outperform affine-invariant nearest-neighbor classifiers obtained through an obvious standardization construction. We illustrate the practical value of our classifiers on two real data examples. Finally, we shortly discuss the possible uses of our depth-based neighbors in other inference problems.Comment: Published at http://dx.doi.org/10.3150/13-BEJ561 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    The DDG^G-classifier in the functional setting

    Get PDF
    The Maximum Depth was the first attempt to use data depths instead of multivariate raw data to construct a classification rule. Recently, the DD-classifier has solved several serious limitations of the Maximum Depth classifier but some issues still remain. This paper is devoted to extending the DD-classifier in the following ways: first, to surpass the limitation of the DD-classifier when more than two groups are involved. Second to apply regular classification methods (like kkNN, linear or quadratic classifiers, recursive partitioning,...) to DD-plots to obtain useful insights through the diagnostics of these methods. And third, to integrate different sources of information (data depths or multivariate functional data) in a unified way in the classification procedure. Besides, as the DD-classifier trick is especially useful in the functional framework, an enhanced revision of several functional data depths is done in the paper. A simulation study and applications to some classical real datasets are also provided showing the power of the new proposal.Comment: 29 pages, 6 figures, 6 tables, Supplemental R Code and Dat

    Wavelet Shrinkage and Thresholding based Robust Classification for Brain Computer Interface

    Full text link
    A macaque monkey is trained to perform two different kinds of tasks, memory aided and visually aided. In each task, the monkey saccades to eight possible target locations. A classifier is proposed for direction decoding and task decoding based on local field potentials (LFP) collected from the prefrontal cortex. The LFP time-series data is modeled in a nonparametric regression framework, as a function corrupted by Gaussian noise. It is shown that if the function belongs to Besov bodies, then using the proposed wavelet shrinkage and thresholding based classifier is robust and consistent. The classifier is then applied to the LFP data to achieve high decoding performance. The proposed classifier is also quite general and can be applied for the classification of other types of time-series data as well, not necessarily brain data
    • …
    corecore