1,188 research outputs found

    On Exchangeability in Network Models

    Get PDF
    We derive representation theorems for exchangeable distributions on finite and infinite graphs using elementary arguments based on geometric and graph-theoretic concepts. Our results elucidate some of the key differences, and their implications, between statistical network models that are finitely exchangeable and models that define a consistent sequence of probability distributions on graphs of increasing size.Comment: Dedicated to the memory of Steve Fienber

    The bandwidth theorem for locally dense graphs

    Get PDF
    The Bandwidth theorem of B\"ottcher, Schacht and Taraz gives a condition on the minimum degree of an nn-vertex graph GG that ensures GG contains every rr-chromatic graph HH on nn vertices of bounded degree and of bandwidth o(n)o(n), thereby proving a conjecture of Bollob\'as and Koml\'os. In this paper we prove a version of the Bandwidth theorem for locally dense graphs. Indeed, we prove that every locally dense nn-vertex graph GG with δ(G)>(1/2+o(1))n\delta (G) > (1/2+o(1))n contains as a subgraph any given (spanning) HH with bounded maximum degree and sublinear bandwidth.Comment: 35 pages. Author accepted version, to appear in Forum of Mathematics, Sigm

    The existence of designs via iterative absorption: hypergraph FF-designs for arbitrary FF

    Full text link
    We solve the existence problem for FF-designs for arbitrary rr-uniform hypergraphs~FF. This implies that given any rr-uniform hypergraph~FF, the trivially necessary divisibility conditions are sufficient to guarantee a decomposition of any sufficiently large complete rr-uniform hypergraph into edge-disjoint copies of~FF, which answers a question asked e.g.~by Keevash. The graph case r=2r=2 was proved by Wilson in 1975 and forms one of the cornerstones of design theory. The case when~FF is complete corresponds to the existence of block designs, a problem going back to the 19th century, which was recently settled by Keevash. In particular, our argument provides a new proof of the existence of block designs, based on iterative absorption (which employs purely probabilistic and combinatorial methods). Our main result concerns decompositions of hypergraphs whose clique distribution fulfills certain regularity constraints. Our argument allows us to employ a `regularity boosting' process which frequently enables us to satisfy these constraints even if the clique distribution of the original hypergraph does not satisfy them. This enables us to go significantly beyond the setting of quasirandom hypergraphs considered by Keevash. In particular, we obtain a resilience version and a decomposition result for hypergraphs of large minimum degree.Comment: This version combines the two manuscripts `The existence of designs via iterative absorption' (arXiv:1611.06827v1) and the subsequent `Hypergraph F-designs for arbitrary F' (arXiv:1706.01800) into a single paper, which will appear in the Memoirs of the AM

    Pairs of SAT Assignment in Random Boolean Formulae

    Get PDF
    We investigate geometrical properties of the random K-satisfiability problem using the notion of x-satisfiability: a formula is x-satisfiable if there exist two SAT assignments differing in Nx variables. We show the existence of a sharp threshold for this property as a function of the clause density. For large enough K, we prove that there exists a region of clause density, below the satisfiability threshold, where the landscape of Hamming distances between SAT assignments experiences a gap: pairs of SAT-assignments exist at small x, and around x=1/2, but they donot exist at intermediate values of x. This result is consistent with the clustering scenario which is at the heart of the recent heuristic analysis of satisfiability using statistical physics analysis (the cavity method), and its algorithmic counterpart (the survey propagation algorithm). The method uses elementary probabilistic arguments (first and second moment methods), and might be useful in other problems of computational and physical interest where similar phenomena appear

    A new graph perspective on max-min fairness in Gaussian parallel channels

    Full text link
    In this work we are concerned with the problem of achieving max-min fairness in Gaussian parallel channels with respect to a general performance function, including channel capacity or decoding reliability as special cases. As our central results, we characterize the laws which determine the value of the achievable max-min fair performance as a function of channel sharing policy and power allocation (to channels and users). In particular, we show that the max-min fair performance behaves as a specialized version of the Lovasz function, or Delsarte bound, of a certain graph induced by channel sharing combinatorics. We also prove that, in addition to such graph, merely a certain 2-norm distance dependent on the allowable power allocations and used performance functions, is sufficient for the characterization of max-min fair performance up to some candidate interval. Our results show also a specific role played by odd cycles in the graph induced by the channel sharing policy and we present an interesting relation between max-min fairness in parallel channels and optimal throughput in an associated interference channel.Comment: 41 pages, 8 figures. submitted to IEEE Transactions on Information Theory on August the 6th, 200
    • …
    corecore