1,734 research outputs found

    A generalisation of the nonlinear small-gain theorem for systems with abstract initial conditions

    No full text
    We consider the development of a general nonlinear small-gain theorem for systems with abstract initial conditions. Systems are defined in a set theoretic manner from input-output pairs on a doubly infinite time axis, and a general construction of the initial conditions (i.e. a state at time zero) is given in terms of an equivalence class of trajectories on the negative time axis. By using this formulation, an ISS-type nonlinear small-gain theorem is established with complete disconnection between the stability property and the existence, uniqueness properties. We provide an illustrative example

    Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control

    Full text link
    The control of the spread of dengue fever by introduction of the intracellular parasitic bacterium Wolbachia in populations of the vector Aedes aegypti, is presently one of the most promising tools for eliminating dengue, in the absence of an efficient vaccine. The success of this operation requires locally careful planning to determine the adequate number of individuals carrying the Wolbachia parasite that need to be introduced into the natural population. The introduced mosquitoes are expected to eventually replace the Wolbachia-free population and guarantee permanent protection against the transmission of dengue to human. In this study, we propose and analyze a model describing the fundamental aspects of the competition between mosquitoes carrying Wolbachia and mosquitoes free of the parasite. We then use feedback control techniques to devise an introduction protocol which is proved to guarantee that the population converges to a stable equilibrium where the totality of mosquitoes carry Wolbachia.Comment: 24 pages, 5 figure

    Guaranteed properties for nonlinear gain scheduled control systems

    Get PDF
    Caption title.Includes bibliographical references.Supported by the NASA Ames and Langley Research Centers. NASA/NAG 2-297Jeff S. Shamma, Michael Athans

    Analysis of gain scheduled control for linear parameter-varying plants

    Get PDF
    Caption title. "September 1988."Includes bibliographical references.Supported by the NASA Ames and Langley Research Centers under grant NASA/NAG-2-297Jeff S. Shamma, Michael Athans

    Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka-Volterra Models

    Full text link
    We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka-Volterra type interactions defined on a dd-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka-Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.Comment: 19 pages, 11 figures, 2-column revtex4 format. Minor modifications. Accepted in the Journal of Statistical Physics. Movies corresponding to Figures 2 and 3 are available at http://www.phys.vt.edu/~tauber/PredatorPrey/movies

    On stabilization of nonlinear systems with drift by time-varying feedback laws

    Full text link
    This paper deals with the stabilization problem for nonlinear control-affine systems with the use of oscillating feedback controls. We assume that the local controllability around the origin is guaranteed by the rank condition with Lie brackets of length up to 3. This class of systems includes, in particular, mathematical models of rotating rigid bodies. We propose an explicit control design scheme with time-varying trigonometric polynomials whose coefficients depend on the state of the system. The above coefficients are computed in terms of the inversion of the matrix appearing in the controllability condition. It is shown that the proposed controllers can be used to solve the stabilization problem by exploiting the Chen-Fliess expansion of solutions of the closed-loop system. We also present results of numerical simulations for controlled Euler's equations and a mathematical model of underwater vehicle to illustrate the efficiency of the obtained controllers.Comment: This is the author's version of the manuscript accepted for publication in the Proceedings of the 12th International Workshop on Robot Motion Control (RoMoCo'19
    corecore