161 research outputs found

    Application specific asynchronous microengines for efficient high-level control

    Get PDF
    technical reportDespite the growing interest in asynchronous circuits programmable asynchronous controllers based on the idea of microprogramming have not been actively pursued Since programmable control is widely used in many commercial ASICs to allow late correction of design errors to easily upgrade product families to meet the time to market and even efficient run time modications to control in adaptive systems we consider it crucial that self timed techniques support efficient programmable control This is especially true given that asynchronous (self-timed) circuits are well suited for realizing reactive and control intensive designs We offer a practical solution to programmable asynchronous control in the form of application-speciffic microprogrammed asynchronous controllers (or microengines). The features of our solution include a modular and easily extensible datapath structure support for two main styles of hand shaking (namely two phase and four phase), and many efficiency measures based on exploiting concurrency between operations and employing efficient circuit structures Our results demonstrate that the proposed microengine can yield high performance-in fact performance close to that offered by automated high level synthesis tools targeting custom hard wired burstmode machines

    Application specific asynchronous microgengines for efficient high-level control

    Get PDF
    technical reportDespite the growing interest in asynchronous circuits, programmable asynchronous controllers based on the idea of microprogramming have not been actively pursued. Since programmable control is widely used in many commercial ASICs to allow late correction of design errors, to easily upgrade product families, to meet the time to market, and even effect run-time modifications to control in adaptive systems, we consider it crucial that self-timed techniques support efficient programmable control. This is especially true given that asynchronous (self-timed) circuits are well suited for realizing reactive and control-intensive designs. We offer a practical solution to programmable asynchronous control in the form of application-specific micro-programmed asynchronous controllers (or microengines). The features of our solution include a modular and easily extensible datapath structure, support for two main styles of handshaking (namely two-phase and four-phase), and many efficiency measures based on exploiting concurrency between operations and employing efficient circuit structures. Our results demonstrate that the proposed microengine can yield high performance?in fact performance close to that offered by automated high-level synthesis tools targeting custom hard-wired burstmode machines

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    Practical advances in asynchronous design and in asynchronous/synchronous interfaces

    Get PDF
    Journal ArticleAsynchronous systems are being viewed as an increasingly viable alternative to purely synchronous systems. This paper gives an overview of the current state of the art in practical asynchronous circuit and system design in four areas: controllers, datapaths, processors, and the design of asynchronous/synchronous interfaces

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version

    Characterization of asynchronous templates for integration into clocked CAD flows

    Get PDF
    Journal ArticleAsynchronous circuit design can result in substantial benefits of reduced power, improved performance, and high modularity. However, asynchronous design styles are largely incompatible with clocked CAD, which has prevented wide-scale adoption. The key incompatibility is timing. Thus most commercial work relies on custom CAD or untimed delay-insensitive design methodologies. This paper proposes a new methodology, based on formal verification and relative timing, to create and prove correct necessary constraints to support asynchronous design with traditional clocked CAD. These constraints support timing driven synthesis, place and route, and behavior and timing validation of fully asynchronous designs using traditional clocked CAD flows. This flow is demonstrated through a simple example pipeline in IBM's 65nm process showing the ability to retarget the design for improved power and performance

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Testing two-phase transition signaling based self-timed circuits in a synthesis environment

    Get PDF
    Journal ArticleThe problem of testing self-timed circuits generated by an automatic synthesis system is studied. Two-phase transition signalling is assumed and the circuits are targetted for an asynchronous macromodule based implementation as in [?, ?, ?, ?]. The partitioning of the circuits into control blocks, function blocks, and predicate (conditional) blocks, originally conceived for synthesis purpose, is found to be very elegant and appropriate for test generation. The problem of data dependent control flow is solved by introducing a new macromodule called SCANSELECT (SELECT with scan). Algorithms for test generation are based on the Petri-net like representation of the physical circuit. The techniques are illustrated on the high-level synthesis system called SHILPA being developed by the Author's

    DFT Techniques and Automation for Asynchronous NULL Conventional Logic Circuits

    Get PDF
    Conventional automatic test pattern generation (ATPG) algorithms fail when applied to asynchronous NULL convention logic (NCL) circuits due to the absence of a global clock and presence of more state-holding elements, leading to poor fault coverage. This paper presents a design-for-test (DFT) approach aimed at making asynchronous NCL designs testable using conventional ATPG programs. We propose an automatic DFT insertion flow (ADIF) methodology that performs scan and test point insertion on NCL designs to improve test coverage, using a custom ATPG library. Experimental results show significant increase in fault coverage for NCL cyclic and acyclic pipelined designs

    CAD Tools for Synthesis of Sleep Convention Logic

    Get PDF
    This dissertation proposes an automated flow for the Sleep Convention Logic (SCL) asynchronous design style. The proposed flow synthesizes synchronous RTL into an SCL netlist. The flow utilizes commercial design tools, while supplementing missing functionality using custom tools. A method for determining the performance bottleneck in an SCL design is proposed. A constraint-driven method to increase the performance of linear SCL pipelines is proposed. Several enhancements to SCL are proposed, including techniques to reduce the number of registers and total sleep capacitance in an SCL design
    • …
    corecore