1,050 research outputs found

    Observations on Factors Affecting Performance of MapReduce based Apriori on Hadoop Cluster

    Full text link
    Designing fast and scalable algorithm for mining frequent itemsets is always being a most eminent and promising problem of data mining. Apriori is one of the most broadly used and popular algorithm of frequent itemset mining. Designing efficient algorithms on MapReduce framework to process and analyze big datasets is contemporary research nowadays. In this paper, we have focused on the performance of MapReduce based Apriori on homogeneous as well as on heterogeneous Hadoop cluster. We have investigated a number of factors that significantly affects the execution time of MapReduce based Apriori running on homogeneous and heterogeneous Hadoop Cluster. Factors are specific to both algorithmic and non-algorithmic improvements. Considered factors specific to algorithmic improvements are filtered transactions and data structures. Experimental results show that how an appropriate data structure and filtered transactions technique drastically reduce the execution time. The non-algorithmic factors include speculative execution, nodes with poor performance, data locality & distribution of data blocks, and parallelism control with input split size. We have applied strategies against these factors and fine tuned the relevant parameters in our particular application. Experimental results show that if cluster specific parameters are taken care of then there is a significant reduction in execution time. Also we have discussed the issues regarding MapReduce implementation of Apriori which may significantly influence the performance.Comment: 8 pages, 8 figures, International Conference on Computing, Communication and Automation (ICCCA2016

    A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures

    Full text link
    Scientific problems that depend on processing large amounts of data require overcoming challenges in multiple areas: managing large-scale data distribution, co-placement and scheduling of data with compute resources, and storing and transferring large volumes of data. We analyze the ecosystems of the two prominent paradigms for data-intensive applications, hereafter referred to as the high-performance computing and the Apache-Hadoop paradigm. We propose a basis, common terminology and functional factors upon which to analyze the two approaches of both paradigms. We discuss the concept of "Big Data Ogres" and their facets as means of understanding and characterizing the most common application workloads found across the two paradigms. We then discuss the salient features of the two paradigms, and compare and contrast the two approaches. Specifically, we examine common implementation/approaches of these paradigms, shed light upon the reasons for their current "architecture" and discuss some typical workloads that utilize them. In spite of the significant software distinctions, we believe there is architectural similarity. We discuss the potential integration of different implementations, across the different levels and components. Our comparison progresses from a fully qualitative examination of the two paradigms, to a semi-quantitative methodology. We use a simple and broadly used Ogre (K-means clustering), characterize its performance on a range of representative platforms, covering several implementations from both paradigms. Our experiments provide an insight into the relative strengths of the two paradigms. We propose that the set of Ogres will serve as a benchmark to evaluate the two paradigms along different dimensions.Comment: 8 pages, 2 figure
    • …
    corecore