783 research outputs found

    Design, Implementation and Evaluation of a Microgrid in Island and Grid Connected Modes with a Fuel Cell Power Source

    Get PDF
    The ability to connect a microgrid to the grid is an important step in the development and evolution of the modern power system. The principle objectives of this research are (1) to simulate a simple microgrid consisting of a PEM hydrogen fuel cell, load and connection to the grid and (2) to evaluate the resulting microgrid control system on a corresponding experimental microgrid. The microgrid simulation demonstrated that the control algorithms can operate the microgrid in both islanded (VSC with voltage and frequency regulation) and grid connected (VSC with current control for power transfer). The experimental laboratory microgrid was constructed and operated in real-time performing its black start and managed transitions between island and grid connected modes of operation. The synchronization method adjusted the island microgrid to become in phase with the grid and tracked well under steady state and load changing conditions. The synchronization process brought the island in phase with the grid within 400 ms. Passive island detection was demonstrated with the restoration to grid operation. The grid connected voltage and current THD were under 1%

    A fuzzy rule based approach for islanding detection in grid connected inverter systems

    Get PDF
    Islanding is when an area of the electrical distribution system is isolated from the electrical system while being powered by distributed generators. An important condition for the interconnection of power plants and distribution systems is the ability of the power plant to detect islands. The presented and proposed method is a combination of best active sandia frequency shift (SFS) method with the intelligent fuzzy logic controller, which has been tested in distributed production using the island detection function. And the choice to improve the method by fuzzy logic control (FLC) is retained, as this process is more effective in decreasing the non-detection zone (NDZ) and in further improving the efficiency of the islanding detection system. This paper proposes a new active islanding detection technique controlled by a fuzzy logic controller, for grid connected photovoltaic (PV) inverters. In addition, the efficiency and performance of the proposed method strategy for islanding detection has been analyzed and tested in the various situations of the network. In addition, the results of the simulations with the power simulation (PSIM) software will be provided to illustrate the main conclusions and the development of the control. Thus, will be used to show the feasibility and validity of the proposed new algorithm

    The Modeling and Advanced Controller Design of Wind, PV and Battery Inverters

    Get PDF
    Renewable energies such as wind power and solar energy have become alternatives to fossil energy due to the improved energy security and sustainability. This trend leads to the rapid growth of wind and Photovoltaic (PV) farm installations worldwide. Power electronic equipments are commonly employed to interface the renewable energy generation with the grid. The intermittent nature of renewable and the large scale utilization of power electronic devices bring forth numerous challenges to system operation and design. Methods for studying and improving the operation of the interconnection of renewable energy such as wind and PV are proposed in this Ph.D. dissertation.;A multi-objective controller including is proposed for PV inverter to perform voltage flicker suppression, harmonic reduction and unbalance compensation. A novel supervisory control scheme is designed to coordinate PV and battery inverters to provide high quality power to the grid. This proposed control scheme provides a comprehensive solution to both active and reactive power issues caused by the intermittency of PV energy. A novel real-time experimental method for connecting physical PV panel and battery storage is proposed, and the proposed coordinated controller is tested in a Hardware in the Loop (HIL) experimental platform based on Real Time Digital Simulator (RTDS).;This work also explores the operation and controller design of a microgrid consisting of a direct drive wind generator and a battery storage system. A Model Predictive Control (MPC) strategy for the AC-DC-AC converter of wind system is derived and implemented to capture the maximum wind energy as well as provide desired reactive power. The MPC increases the accuracy of maximum wind energy capture as well as minimizes the power oscillations caused by varying wind speed. An advanced supervisory controller is presented and employed to ensure the power balance while regulating the PCC bus voltage within acceptable range in both grid-connected and islanded operation.;The high variability and uncertainty of renewable energies introduces unexpected fast power variation and hence the operation conditions continuously change in distribution networks. A three-layers advanced optimization and intelligent control algorithm for a microgrid with multiple renewable resources is proposed. A Dual Heuristic Programming (DHP) based system control layer is used to ensure the dynamic reliability and voltage stability of the entire microgrid as the system operation condition changes. A local layer maximizes the capability of the Photovoltaic (PV), wind power generators and battery systems, and a Model Predictive Control (MPC) based device layer increases the tracking accuracy of the converter control. The detail design of the proposed SWAPSC scheme are presented and tested on an IEEE 13 node feeder with a PV farm, a wind farm and two battery-based energy storage systems

    A comparison of AC and HVDC options for the connection of offshore wind generation in Great Britain

    Get PDF
    This paper presents a comparison of two forms of cable connection of a distant offshore wind farm to a transmission system: AC and HVDC. The requirements of relevant industry standards in Great Britain (GB) that drive a connection design and, hence, its cost are highlighted along with an analysis of the ways in which AC cable connections might be made to comply while facilitating export of active power. Dynamic studies investigating responses to grid-side short circuit faults show that, in the particular scenarios studied, an AC connection of a wind farm in the place of a large synchronous generator is marginally detrimental while an HVDC connection is beneficial. A comparison of costs shows that the cross-over distance at which HVDC is cheaper than AC for wind farms of different sizes occurs at longer distances than have hitherto commonly been assumed, and AC connections benefit from reactive compensation not only at the point of common coupling and wind farm end but also at the connection mid-point

    Control contributions to the universal operation of wind turbines

    Get PDF
    Ante la creciente dependencia energética de los países de la Unión Europea y los informes de contaminación atmosférica, la generación distribuida mediante energías renovables está modificando el sistema eléctrico actualmente basado en el paradigma centralizado. Dentro de las energías renovables con mayor impacto actual se encuentra la energía eólica. Un aspecto importante a mejorar en el marco de la calidad de potencia por parte del operador de la red de transmisión, es la continuidad del suministro. En estas circunstancias se define el concepto de microgrid como un sistema compuesto de al menos una fuente de generación distribuida asociada a cargas locales que pueden intencionalmente desconectarse del sistema de distribución con el objetivo de mejorar la fiabilidad del suministro. Este trabajo introduce la Operación Universal de aerogeneradores, donde éstos pueden trabajar conectados a red eléctrica y desconectarse de ella cuando ocurre un hueco o interrupción del suministro operando en modo isla. Es una aplicación específica del concepto de microgrid a aerogeneradores que evita el uso de sistemas de almacenamiento empleando únicamente las capacidades de almacenamiento y disipación intrínsecas de los aerogeneradores y se centra en contrarrestar interrupciones del suministro eléctrico del orden de unidades de minutos. Este trabajo se centra en abordar la problemática asociada a la Operación Universal de aerogeneradores desde el punto de vista del control de los convertidores de potencia: regulación del balance energético, compartición de la carga y control de la tensión local en modo isla y transiciones suaves entre modos de operación. Además, el sistema debe seguir manteniendo un rendimiento óptimo en modo conectado a red respetando los códigos de red: respuesta en potencia, calidad de potencia y respuesta ante perturbaciones

    Virtual Droop Control Framework and Stability Analyses for Microgrids with High Penetration of Renewables

    Get PDF
    Microgrids can provide the most promising means of integrating large amounts of distributed sources into the power grid and can supply reliable power to critical loads. However, managing distributed sources and loads within a microgrid during island and grid-tie modes and during transitions is a challenge. Stable operation of a microgrid is a concern specifically during the starting of motor loads, switching of large loads, and in presence of high penetration of renewable resources. Hence, a generalized control framework is required to regulate microgrid voltage and frequency, maintain power quality, manage Distributed Generations (DG) and ensure microgrid stability. Several control methods have been developed for microgrid control. Majority of these techniques are based on natural droop control or modified natural droop control, which rely on voltage and frequency variations as inputs to control algorithms. At present, there are no methods available for sizing the capacities needed to ensure reliable operation and stability. A new microgrid control framework, Virtual Droop Control (VDC), for power management as well as for voltage and frequency regulation is proposed in this thesis. The proposed control method analyzes the effect of intermittent resources and dispatches the power commands to individual generation assets ensuring stable operation of the microgrid. The proposed method is described, formulated and compared with existing natural droop control technique in this dissertation. The unit commitment algorithm has also been implemented to manage non-renewable sources to improve system efficiency. The proposed technique operates the microgrid at a constant voltage and frequency and uses communications for power sharing. It also provides the means to operate the microgrid in case of lost communication or sabotage on the communication network. The modeling results of the Virtual VDC technique have been compared with exiting microgrid control methods including natural droop control technique. A laboratory setup, that consists of a 100kW natural gas generator, a 56 kWh Li-ion battery with a 250kW inverter, and a 100kW load bank, has been built and tested. The results of the setup have been provided, confirming the viability of the proposed technique. Detailed analysis for intentional islanding, unintentional islanding, and reconnection are presented. The state space model has been developed for the Fort Sill microgrid and the stability analysis has been performed to verify stability of a microgrid in various scenarios. The proposed method has been applied to the Fort Sill microgrid and examined for effectiveness and viability. A modified control technique is also proposed to regulate the voltage and frequency for high penetration of renewable energy, which can be used with VDC framework. This technique allows the improvement of efficiency and power quality indexes for critical loads while reducing greenhouse gas emissions. The standard IEEE 34 bus system is modified and adapted to function as a microgrid test bed. Three different cases were studied and analyzed. The CO2 emission, efficiency, and power quality indexes have been calculated and compared for all three cases in order to verify the performance of the proposed control technique

    Real-Time Hardware-In-the-Loop Testing of IEC 61850 GOOSE based Logically Selective Adaptive Protection of AC Microgrid

    Get PDF
    The real-time (RT) hardware-in-the-loop (HIL) simulation-based testing is getting popular for power systems and power electronics applications. The HIL testing provides the interactive environment between the actual power system components like control and protection devices and simulated power system networks including different communication protocols. Therefore, the results of the RT simulation and HIL testing before the actual implementation in the field are generally more acceptable than offline simulations. This paper reviews the HIL testing methods and applications in the recent literature and presents a step-by-step documentation of a new HIL testing setup for a specific case study. The case study evaluates improved version of previously proposed communication-dependent logically selective adaptive protection algorithm of AC microgrids using the real-time HIL testing of IEC 61850 generic object-oriented substation event (GOOSE) protocol. The RT model of AC microgrid including the converter-based distributed energy resources and battery storage along with IEC 61850 GOOSE protocol implementation is created in MATLAB/Simulink and RT-LAB software using OPAL-RT simulator platform. The Ethernet switch acts as IEC 61850 station bus for exchanging GOOSE Boolean signals between the RT target and the actual digital relay. The evaluation of the round-trip delay using the RT simulation has been performed. It is found that the whole process of fault detection, isolation and adaptive setting using Ethernet communication is possible within the standard low voltage ride through curve maintaining the seamless transition to the islanded mode. The signal monitoring inside the relay is suggested to avoid false tripping of the relay.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This work was mainly carried out in the SolarX research project funded by the Business Finland under Grant No. 6844/31/2018. Some part of this work was carried out during the VINPOWER research project funded by the European Regional Development Fund (ERDF), Project No. A73094. The financial support provided through these projects is greatly acknowledged.fi=vertaisarvioitu|en=peerReviewed

    Controle coordenado em microrredes de baixa tensão baseado no algoritmo power-based control e conversor utility interface

    Get PDF
    Orientadores: José Antenor Pomilio, Fernando Pinhabel MarafãoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Esta tese apresenta uma possível arquitetura e sua respectiva estratégia de controle para microrredes de baixa tensão, considerando-se a existência de geradores distribuídos pela rede. A técnica explora totalmente a capacidade dos geradores distribuídos em ambos os modos de operação: conectado à rede e ilhado. Quando conectado à rede, sob o modo de otimização global, o controle busca a operação quase ótima da microrrede, reduzindo as perdas de distribuição e os desvios de tensão. Quando em modo ilhado, a técnica regula de forma eficaz os geradores distribuídos disponíveis, garantindo a operação autônoma, segura e suave da microrrede. A estratégia de controle é aplicada a uma estrutura de microrrede completamente despachável, baseada em uma arquitetura de controle mestre-escravo, em que as unidades distribuídas são coordenadas por meio do recém-desenvolvido algoritmo Power-Based Control. As principais vantagens da arquitetura proposta são a expansividade e a capacidade de operar sem sincronização ou sem conhecimento das impedâncias de linha. Além disso, a microrrede regula as interações com a rede por meio do conversor chamado de Utility Interface, o qual é um inversor trifásico com armazenador de energia. Esta estrutura de microrrede permite algumas vantagens como: compensação de desbalanço e reativo, rápida resposta aos transitórios de carga e de rede, e suave transição entre os modos de operação. Em contrapartida, para compartilhar a potência ativa e reativa proporcionalmente entre as unidades distribuídas, controlar a circulação de reativos, e maximizar a operação, a comunicação da microrrede requer em um canal de comunicação confiável, ainda que sem grandes exigências em termos de resolução ou velocidade de transmissão. Neste sentido, foi demonstrado que uma falha na comunicação não colapsa o sistema, apenas prejudica o modo de otimização global. Entretanto, o sistema continua a operar corretamente sob o modo de otimização local, que é baseado em um algoritmo de programação linear que visa otimizar a compensação de reativos, harmônicos e desbalanço de cargas por meio dos gerador distribuído, particularmente, quando sua capacidade de potência é limitada. Esta formulação consiste em atingir melhores índices de qualidade de energia, definidos pelo lado da rede e dentro de uma região factível em termos de capacidade do conversor. Baseado nas medições de tensão e corrente de carga e uma determinada função objetiva, o algoritmo rastreia as correntes da rede ótima, as quais são utilizadas para calcular os coeficientes escalares e finalmente estes são aplicados para encontrar as referências da corrente de compensação. Finalmente, ainda é proposta uma técnica eficiente para controlar os conversores monofásicos conectados arbitrariamente ao sistema de distribuição trifásico, sejam conectados entre fase e neutro ou entre fase e fase, com o objetivo de compensar o desbalanço de carga e controlar o fluxo de potência entre as diferentes fases da microrrede. Isto melhora a qualidade da energia elétrica no ponto de acoplamento comum, melhora o perfil de tensão nas linhas, e reduz as perdas de distribuição. A arquitetura da microrrede e a estratégia de controle foi analisada e validada através de simulações computacionais e resultados experimentais, sob condições de tensão senoidal/simétrica e não-senoidal/assimétrica, avaliando-se o comportamento em regime permanente e dinâmico do sistema. O algoritmo de programação linear que visa otimizar a compensação foi analisado por meio de resultados de simulaçãoAbstract: This thesis presents a flexible and robust architecture and corresponding control strategy for modern low voltage microgrids with distributed energy resources. The strategy fully exploits the potential of distributed energy resources, under grid-connected and islanded operating modes. In grid-connected mode, under global optimization mode, the control strategy pursues quasi-optimum operation of the microgrid, so as to reduce distribution loss and voltage deviations. In islanded mode, it effectively manages any available energy source to ensure a safe and smooth autonomous operation of the microgrid. Such strategy is applied to a fully-dispatchable microgrid structure, based on a master-slave control architecture, in which the distributed units are coordinated by means of the recently developed power-based control. The main advantages of the proposed architecture are the scalability (plug-and-play) and capability to run the distributed units without synchronization or knowledge of line impedances. Moreover, the proposed microgrid topology manages promptly the interaction with the mains by means of a utility interface, which is a grid-interactive inverter equipped with energy storage. This allows a number of advantages, including compensation of load unbalance, reduction of harmonic injection, fast reaction to load and line transients, and smooth transition between operating mode. On the other hand, in order to provide demand response, proportional power sharing, reactive power control, and full utilization of distributed energy resources, the microgrid employs a reliable communication link with limited bit rate that does not involve time-critical communications among distributed units. It has been shown that a communication failure does not jeopardize the system, and just impairs the global optimization mode. However, the system keeps properly operating under the local optimization mode, which is managed by a linear algorithm in order to optimize the compensation of reactive power, harmonic distortion and load unbalance by means of distributed electronic power processors, for example, active power filters and other grid-connected inverters, especially when their capability is limited. It consists in attain several power quality performance indexes, defined at the grid side and within a feasible power region in terms of the power converter capability. Based on measured load quantities and a certain objective function, the algorithm tracks the expected optimal source currents, which are thereupon used to calculate some scaling coefficients and, therefore, the optimal compensation current references. Finally, the thesis also proposes an efficient technique to control single-phase converters, arbitrarily connected to a three-phase distribution system (line-to-neutral or line-to-line), aiming for reduce unbalance load and control the power flow among different phases. It enhances the power quality at the point-of-common-coupling of the microgrid, improve voltage profile through the lines, and reduce the overall distribution loss. The master-slave microgrid architecture has been analyzed and validated by means of computer simulations and experimental results under sinusoidal/symmetrical and nonsinusoidal/asymmetrical voltage conditions, considering both the steady-state and dynamic performances. The local optimization mode, i.e., linear algorithm for optimized compensation, has been analyzed by simulation resultsDoutoradoEnergia EletricaDoutor em Engenharia Elétrica2012/24309-8, 2013/21922-3FAPES

    Real time adaptive relay settings for Microgrid protection verified using Hardware in Loop

    Get PDF
    Microgrids with penetration of renewables is imposing new challenges for system protection. Renewables are characterized with high source impedance which limit the short circuit current. The value of short-circuit current is limited due to converters used which limit the current to a maximum of 1.1 to 1.5 times maximum rated load current. This can result in faults during the islanded mode of microgrid to go unnoticed if the relay settings are not adapted to account for it. The presence of such uncleared faults in the microgrid can result in exposing it to overcurrent for a long time which can damage the equipment. One solution is to have different protection element pickup settings for different modes of operation. This report discusses the development of an algorithm to switch these settings upon microgrid state changes and test the algorithm using OPAL-RT hardware in loop real-time testing with SEL-351S relay as the hardware
    corecore