674 research outputs found

    Simulation of Area of Interest Management for Massively Multiplayer Online Games Using OPNET

    Get PDF
    In recent years, there has been an important growth of online gaming. Today’s Massively Multiplayer Online Games (MMOGs) can contain millions of synchronous players scattered across the world and participating with each other within a single shared game. The increase in the number of players in MMOGs has led to some issues with the demand of server which generates a significant increase in costs for the game industry and impacts to the quality of service offered to players. With the number of players gradually increasing, servers still need to work efficiently under heavy load and, new researches are required to improve the established MMOG system architectures. In dealing with a considerable scale of massively multiplayer online games, several client-server and peer-to-peer solutions have been proposed. Although they have improved the scalability of MMOGs in different degrees, they faced new serious challenges in interest management. In this paper, we propose a novel static area of interest management in order to reduce the delay and traffic of Hybrid P2P MMOGs. We propose to use OPNET Modeler 18.0, and in particular the custom application to simulate the new architecture, which required the implementation of new nodes models and behaviors in the simulator to emulate correctly the new architecture. The scenarios include both client-server and hybrid P2P system to evaluate the communication of games with (125, 500, and 1000) peers. The simulation results show that area of interest management for MMOGs based on the hybrid P2P architectures have low delay and traffic received compared with MMOGs based on client-server system

    Re-engineering jake2 to work on a grid using the GridGain Middleware

    Get PDF
    With the advent of Massively Multiplayer Online Games (MMOGs), engineers and designers of games came across with many questions that needed to be answered such as, for example, "how to allow a large amount of clients to play simultaneously on the same server?", "how to guarantee a good quality of service (QoS) to a great number of clients?", "how many resources will be necessary?", "how to optimize these resources to the maximum?". A possible answer to these questions relies on the usage of grid computing. Taking into account the parallel and distributed nature of grid computing, we can say that grid computing allows for more scalability in terms of a growing number of players, guarantees shorter communication time between clients and servers, and allows for a better resource management and usage (e.g., memory, CPU, core balancing usage, etc.) than the traditional serial computing model. However, the main focus of this thesis is not about grid computing. Instead, this thesis describes the re-engineering process of an existing multiplayer computer game, called Jake2, by transforming it into a MMOG, which is then put to run on a grid

    Evaluation of Scalability and Communication in MMOGs

    Get PDF
    Massively Multiplayer Online Games (MMOGs) can involve millions of synchronous players scattered across the world and participating with each other within a single shared game. One of the most significant issues in MMOGs is scalability and it is impact on the responsiveness and the quality of the game. In this paper, we propose a new architecture to increase the scalability without affecting the responsiveness of the game, using a hybrid Peer-to-Peer system. This mechanism consists of central servers to control and manage the game state, as well as super-peer and clone-super-peer to control and manage sub-networks of nodes sharing common regions of the game world. We use the OPNET Modeler to simulate the system and compare the results with client/server system to show the difference in delay and traffic received for various applications such as remote login, database, HTTP, and FTP sessions which are all part of an MMOG system. We use four scenarios for each system to evaluate the scalability of the system with different number of peers (i.e.125, 250, 500, and 1000 peers). The results show that the hybrid P2P system is more scalable for MMOGs when compared with client/server system

    Load balancing for massively multiplayer online games

    Full text link
    Supporting thousands, possibly hundreds of thousands, of players is a requirement that must be satisfied when delivering server based online gaming as a commercial concern. Such a requirement may be satisfied by utilising the cumulative processing resources afforded by a cluster of servers. Clustering of servers allow great flexibility, as the game provider may add servers to satisfy an increase in processing demands, more players, or remove servers for routine maintenance or upgrading. If care is not taken, the way processing demands are distributed across a cluster of servers may hinder such flexibility and also hinder player interaction within a game. In this paper we present an approach to load balancing that is simple and effective, yet maintains the flexibility of a cluster while promoting player interaction

    Secure referee selection for fair and responsive peer-to-peer gaming

    Get PDF
    Peer-to-Peer (P2P) architectures for Massively Multiplayer Online Games (MMOG) provide better scalability than Client/Server (C/S); however, they increase the possibility of cheating. Recently proposed P2P protocols use trusted referees that simulate/validate the game to provide security equivalent to C/S. When selecting referees from untrusted peers, selecting non-colluding referees becomes critical. Further, referees should be selected such that the range and length of delays to players is minimised (maximising game fairness and responsiveness). In this paper we formally define the referee selection problem and propose two secure referee selection algorithms, SRS-1 and SRS-2, to solve it. Both algorithms ensure the probability of corrupt referees controlling a zone/region is below a predefined limit, while attempting to maximise responsiveness and fairness. The trade-off between responsiveness and fairness is adjustable for both algorithms. Simulations of three different scenarios show the effectiveness of our algorithms

    A Systematic Mapping Study of MMOG Backend Architectures

    Get PDF
    The advent of utility computing has revolutionized almost every sector of traditional software development. Especially commercial cloud computing services, pioneered by the likes of Amazon, Google and Microsoft, have provided an unprecedented opportunity for the fast and sustainable development of complex distributed systems. Nevertheless, existing models and tools aim primarily for systems where resource usage—by humans and bots alike—is logically and physically quite disperse resulting in a low likelihood of conflicting resource access. However, a number of resource-intensive applications, such as Massively Multiplayer Online Games (MMOGs) and large-scale simulations introduce a requirement for a very large common state with many actors accessing it simultaneously and thus a high likelihood of conflicting resource access. This paper presents a systematic mapping study of the state-of-the-art in software technology aiming explicitly to support the development of MMOGs, a class of large-scale, resource-intensive software systems.By examining the main focus of a diverse set of related publications, we identify a list of criteria that are important for MMOG development. Then, we categorize the selected studies based on the inferred criteria in order to compare their approach, unveil the challenges faced in each of them and reveal research trends that might be present. Finally we attempt to identify research directions which appear promising for enabling the use of standardized technology for this class of systems
    • …
    corecore