4,958 research outputs found

    Diagnostic imaging for hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) occurs mostly in individuals with cirrhosis, which is why the guidelines of the most important scientific societies indicate that these patients are included in surveillance programs through the repetition of an ultrasound examination every 6 months. The aim is to achieve early identification of the neoplasia in order to increase the possibility of curative therapies (liver transplantation, surgery or local ablative therapies) and to increase patient survival. HCC nodules arising in cirrhotic livers show characteristic angiographic behavior that can be evaluated with dynamic multidetector computed tomography and dynamic magnetic resonance imaging (MRI). However, the use of these techniques in real life is often hindered by the lack of uniform terminology in reporting and in the interpretation of the exams reflected in the impossibility of comparing examinations performed in different centers and/or at different times. Liver Imaging Reporting and Data System® was created to standardize reporting and data collection of computed tomography and MRI for HCC. In some cases HCC arises in patients with healthy livers and, although there is evidence that angiographic behavior is not different from cirrhotic patients in this clinical situation, the guidelines still indicate the execution of a biopsy. Frequent use of palliative therapeutic techniques such as transarterial chemoembolization, transarterial radioembolization or administration of antiangiogenic drugs (sorafenib) poses problems of interpretation of the therapeutic response with repercussions on the subsequent choices that have been attempted to resolve with the use of stringent criteria such as Modified Response Evaluation Criteria In Solid Tumors

    Combining Hepatic and Splenic CT Radiomic Features Improves Radiomic Analysis Performance for Liver Fibrosis Staging

    Get PDF
    Background: The exact focus of computed tomography (CT)-based artificial intelligence techniques when staging liver fibrosis is still not exactly known. This study aimed to determine both the added value of splenic information to hepatic information, and the correlation between important radiomic features and information exploited by deep learning models for liver fibrosis staging by CT-based radiomics. Methods: The study design is retrospective. Radiomic features were extracted from both liver and spleen on portal venous phase CT images of 252 consecutive patients with histologically proven liver fibrosis stages between 2006 and 2018. The radiomics analyses for liver fibrosis staging were done by hepatic and hepatic–splenic features, respectively. The most predictive radiomic features were automatically selected by machine learning models. Results: When using splenic–hepatic features in the CT-based radiomics analysis, the average accuracy rates for significant fibrosis, advanced fibrosis, and cirrhosis were 88%, 82%, and 86%, and area under the receiver operating characteristic curves (AUCs) were 0.92, 0.81, and 0.85. The AUC of hepatic–splenic-based radiomics analysis with the ensemble classifier was 7% larger than that of hepatic-based analysis (p < 0.05). The most important features selected by machine learning models included both hepatic and splenic features, and they were consistent with the location maps indicating the focus of deep learning when predicting liver fibrosis stage. Conclusions: Adding CT-based splenic radiomic features to hepatic radiomic features increases radiomics analysis performance for liver fibrosis staging. The most important features of the radiomics analysis were consistent with the information exploited by deep learning

    A radiomics-based model to classify the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI

    Get PDF
    The implementation of radiomics in radiology is gaining interest due to its wide range of applications. To develop a radiomics-based model for classifying the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI, 248 patients with a known etiology of liver cirrhosis who underwent 306 gadoxetic acid-enhanced MRI examinations were included in the analysis. MRI examinations were classified into 6 groups according to the etiology of liver cirrhosis: alcoholic cirrhosis, viral hepatitis, cholestatic liver disease, nonalcoholic steatohepatitis (NASH), autoimmune hepatitis, and other. MRI examinations were randomized into training and testing subsets. Radiomics features were extracted from regions of interest segmented in the hepatobiliary phase images. The fivefold cross-validated models (2-dimensional-(2D) and 3-dimensional-(3D) based) differentiating cholestatic cirrhosis from noncholestatic etiologies had the best accuracy (87.5%, 85.6%), sensitivity (97.6%, 95.6%), predictive value (0.883, 0.877), and area under curve (AUC) (0.960, 0.910). The AUC was larger in the 2D-model for viral hepatitis, cholestatic cirrhosis, and NASH-associated cirrhosis (P-value of 0.05, 0.05, 0.87, respectively). In alcoholic cirrhosis, the AUC for the 3D model was larger (P=0.01). The overall intra-class correlation coefficient (ICC) estimates and their 95% confident intervals (CI) for all features combined was 0.68 (CI 0.56-0.87) for 2D and 0.71 (CI 0.61-0.93) for 3D measurements suggesting moderate reliability. Radiomics-based analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI may be a promising noninvasive method for identifying the etiology of liver cirrhosis with better performance of the 2D- compared with the 3D-generated models

    MR Imaging Texture Analysis in the Abdomen and Pelvis

    Get PDF
    Texture analysis (TA) is a form of radiomics and refers to quantitative measurements of the histogram, distribution and/or relationship of pixel intensities or gray scales within a region of interest on an image. TA can be applied to MRI of the abdomen and pelvis, with the main strength being quantitative analysis of pixel intensities and heterogeneity rather than subjective/qualitative analysis. There are multiple limitations of MR texture analysis (MRTA) including a dependency on image acquisition and reconstruction parameters, non-standardized approaches without or with image filtration, diverse software methods and applications, and statistical challenges relating numerous texture analysis results to clinical outcomes in retrospective pilot studies with small sample sizes. Despite these limitations, there is a growing body of literature supporting MRTA. In this review, the application of MRTA to the abdomen and pelvis will be discussed, including tissue or tumor characterization and response evaluation or prediction of outcomes in various tumors

    Learning to diagnose cirrhosis from radiological and histological labels with joint self and weakly-supervised pretraining strategies

    Full text link
    Identifying cirrhosis is key to correctly assess the health of the liver. However, the gold standard diagnosis of the cirrhosis needs a medical intervention to obtain the histological confirmation, e.g. the METAVIR score, as the radiological presentation can be equivocal. In this work, we propose to leverage transfer learning from large datasets annotated by radiologists, which we consider as a weak annotation, to predict the histological score available on a small annex dataset. To this end, we propose to compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis. Finally, we introduce a loss function combining both supervised and self-supervised frameworks for pretraining. This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75, compared to 0.77 and 0.72 for a baseline classifier.Comment: Accepted at IEEE ISBI 202

    Integrated Study of Liver Fibrosis: Modeling and Clinical Detection

    Get PDF
    The liver is a vital organ that carries out over 500 essential tasks, including fat metabolism, blood filtering, bile production, and some protein production. Although the structure of the liver and the role of each type of cells in the liver are well known, the biomedical and mechanical interplays within liver tissues remain unclear. Chronic liver diseases are a significant public health challenge. All chronic liver diseases lead to liver fibrosis due to excessive fiber accumulation, resulting in cirrhosis and loss of liver function. Only early stage liver fibrosis is reversible. However, early-stage liver fibrosis is difficult to diagnose. How the progression of fibrosis changes the mechanical properties of the liver tissue and altering the dynamics of blood flow is still not well understood. The objective of this dissertation is to integrate the understanding of liver diseases and mechanical modeling to develop several models relating liver fibrosis to blood flow. In collaboration with clinicians specialized in hepatic fibrosis, we integrated computational modeling and clinicopathologic image analysis and proposed a new technology for early stage fibrosis detection. The key results of this research include: (1) A mathematical model of liver fibrosis progression connecting the cellular and molecular mechanisms of fibrosis to tissue rigidity; (2) A novel machine learning-based algorithm to automatically stage liver fibrosis based on pathology images; (3) A physics model to illustrate how the liver stiffness affects the blood flow pattern, predicting a direct relationship between fibrosis stage and ultrasound Doppler measurement of liver blood flow; (4) Statistical analysis of clinical ultrasound Doppler data from fibrosis patients confirming our model prediction. These results lead to a novel noninvasive technology for detecting early stages of liver fibrosis with high accuracy
    • …
    corecore