9,636 research outputs found

    Applications of Mathematical Programming in Personnel Scheduling

    Get PDF
    In the few decades of its existence, mathematical programming has evolved into an important branch of operations research and management science. This thesis consists of four papers in which we apply mathematical programming to real-life personnel scheduling and project management problems. We develop exact mathematical programming formulations. Furthermore, we propose effective heuristic strategies to decompose the original problems into subproblems that can be solved effciently with tailored mathematical programming formulations. We opt for solution methods that are based on mathematical programming, because their advantages in practice are a) the exibility to easily accommodate changes in the problem setting, b) the possibility to evaluate the quality of the solutions obtained, and c) the possibility to use general-purpose solvers, which are often the only software available in practice

    Supply chain management of blood products: a literature review.

    Get PDF
    This paper presents a review of the literature on inventory and supply chain management of blood products. First, we identify different perspectives on approaches to classifying the existing material. Each perspective is presented as a table in which the classification is displayed. The classification choices are exemplified through the citation of key references or by expounding the features of the perspective. The main contribution of this review is to facilitate the tracing of published work in relevant fields of interest, as well as identifying trends and indicating which areas should be subject to future research.OR in health services; Supply chain management; Inventory; Blood products; Literature review;

    Performance optimization of a leagility inspired supply chain model: a CFGTSA algorithm based approach

    Get PDF
    Lean and agile principles have attracted considerable interest in the past few decades. Industrial sectors throughout the world are upgrading to these principles to enhance their performance, since they have been proven to be efficient in handling supply chains. However, the present market trend demands a more robust strategy incorporating the salient features of both lean and agile principles. Inspired by these, the leagility principle has emerged, encapsulating both lean and agile features. The present work proposes a leagile supply chain based model for manufacturing industries. The paper emphasizes the various aspects of leagile supply chain modeling and implementation and proposes a new Hybrid Chaos-based Fast Genetic Tabu Simulated Annealing (CFGTSA) algorithm to solve the complex scheduling problem prevailing in the leagile environment. The proposed CFGTSA algorithm is compared with the GA, SA, TS and Hybrid Tabu SA algorithms to demonstrate its efficacy in handling complex scheduling problems

    Development and demonstration of an on-board mission planner for helicopters

    Get PDF
    Mission management tasks can be distributed within a planning hierarchy, where each level of the hierarchy addresses a scope of action, and associated time scale or planning horizon, and requirements for plan generation response time. The current work is focused on the far-field planning subproblem, with a scope and planning horizon encompassing the entire mission and with a response time required to be about two minutes. The far-feld planning problem is posed as a constrained optimization problem and algorithms and structural organizations are proposed for the solution. Algorithms are implemented in a developmental environment, and performance is assessed with respect to optimality and feasibility for the intended application and in comparison with alternative algorithms. This is done for the three major components of far-field planning: goal planning, waypoint path planning, and timeline management. It appears feasible to meet performance requirements on a 10 Mips flyable processor (dedicated to far-field planning) using a heuristically-guided simulated annealing technique for the goal planner, a modified A* search for the waypoint path planner, and a speed scheduling technique developed for this project

    Working Notes from the 1992 AAAI Spring Symposium on Practical Approaches to Scheduling and Planning

    Get PDF
    The symposium presented issues involved in the development of scheduling systems that can deal with resource and time limitations. To qualify, a system must be implemented and tested to some degree on non-trivial problems (ideally, on real-world problems). However, a system need not be fully deployed to qualify. Systems that schedule actions in terms of metric time constraints typically represent and reason about an external numeric clock or calendar and can be contrasted with those systems that represent time purely symbolically. The following topics are discussed: integrating planning and scheduling; integrating symbolic goals and numerical utilities; managing uncertainty; incremental rescheduling; managing limited computation time; anytime scheduling and planning algorithms, systems; dependency analysis and schedule reuse; management of schedule and plan execution; and incorporation of discrete event techniques

    Assessing the Efficiency of Mass Transit Systems in the United States

    Get PDF
    Frustrated with increased parking problems, unstable gasoline prices, and stifling traffic congestion, a growing number of metropolitan city dwellers consider utilizing the mass transit system. Reflecting this sentiment, a ridership of the mass transit system across the United States has been on the rise for the past several years. A growing demand for the mass transit system, however, necessitates the expansion of service offerings, the improvement of basic infrastructure/routes, and the additional employment of mass transit workers, including drivers and maintenance crews. Such a need requires the optimal allocation of financial and human resources to the mass transit system in times of shrinking budgets and government downsizing. Thus, the public transit authority is faced with the dilemma of “doing more with less.” That is to say, the public transit authority needs to develop a “lean” strategy which can maximize transit services with the minimum expenses. To help the public transit authority develop such a lean strategy, this report identifies the best-in-class practices in the U.S. transit service sector and proposes transit policy guidelines that can best exploit lean principles built upon best-in-class practices

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Integrated Models and Algorithms for Automotive Supply Chain Optimization

    Get PDF
    The automotive industry is one of the most important economic sectors, and the efficiency of its supply chain is crucial for ensuring its profitability. Developing and applying techniques to optimize automotive supply chains can lead to favorable economic outcomes and customer satisfaction. In this dissertation, we develop integrated models and algorithms for automotive supply chain optimization. Our objective is to explore methods that can increase the competitiveness of the automotive supply chain via maximizing efficiency and service levels. Based on interactions with an automotive industry supplier, we define an automotive supply chain planning problem at a detailed operational level while taking into account realistic assumptions such as sequence-dependent setups on parallel machines, auxiliary resource assignments, and multiple types of costs. We model the research problem of interest using mixed-integer linear programming. Given the problem’s NP-hard complexity, we develop a hybrid metaheuristic approach, including a constructive heuristic and an effective encoding-decoding strategy, to minimize the total integrated cost of production setups, inventory holding, transportation, and production outsourcing. Furthermore, since there are often conflicting objectives of interest in automotive supply chains, we investigate simultaneously optimizing total cost and customer service level via a multiobjective optimization methodology. Finally, we analyze the impact of adding an additional transportation mode, which offers a cost vs. delivery time option to the manufacturer, on total integrated cost. Our results demonstrate the promising performance of the proposed solution approaches to analyze the integrated cost minimization problem to near optimality in a timely manner, lowering the cost of the automotive supply chain. The proposed bicriteria, hybrid metaheuristic offers decision makers several options to trade-off cost with service level via identified Pareto-optimal solutions. The effect of the available additional transportation mode’s lead time is found to be bigger than its cost on the total integrated cost measure under study
    corecore