2,091 research outputs found

    A linguistic rule-based approach to extract drug-drug interactions from pharmacological documents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A drug-drug interaction (DDI) occurs when one drug influences the level or activity of another drug. The increasing volume of the scientific literature overwhelms health care professionals trying to be kept up-to-date with all published studies on DDI.</p> <p>Methods</p> <p>This paper describes a hybrid linguistic approach to DDI extraction that combines shallow parsing and syntactic simplification with pattern matching. Appositions and coordinate structures are interpreted based on shallow syntactic parsing provided by the UMLS MetaMap tool (MMTx). Subsequently, complex and compound sentences are broken down into clauses from which simple sentences are generated by a set of simplification rules. A pharmacist defined a set of domain-specific lexical patterns to capture the most common expressions of DDI in texts. These lexical patterns are matched with the generated sentences in order to extract DDIs.</p> <p>Results</p> <p>We have performed different experiments to analyze the performance of the different processes. The lexical patterns achieve a reasonable precision (67.30%), but very low recall (14.07%). The inclusion of appositions and coordinate structures helps to improve the recall (25.70%), however, precision is lower (48.69%). The detection of clauses does not improve the performance.</p> <p>Conclusions</p> <p>Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract DDI from texts. To the best of our knowledge, this work proposes the first integral solution for the automatic extraction of DDI from biomedical texts.</p

    UC3M: A kernel-based approach to identify and classify DDIs in biomedical texts

    Get PDF
    Proceedings of: International Workshop on Semantic Evaluation. SemEval-2013 : Semantic Evaluation Exercises. Took place in 2013 June 14-15, in Atlanta, Georgia (USA). The event Web site in http://www.cs.york.ac.uk/semeval-2013/The domain of DDI identification is constantly showing a rise of interest from scientific community since it represents a decrease of time and healthcare cost. In this paper we purpose a new approach based on shallow linguistic kernel methods to identify DDIs in biomedical manuscripts. The approach outlines a first step in the usage of semantic information for DDI identification. The system obtained an F1 measure of 0.534.This work has been funded by MA2VICMR project (S2009/TIC-1542) and MULTIMEDICA project10 (TIN 2010-20644-C03-01)Publicad

    Information extraction from medication leaflets

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    The 1st DDIExtraction-2011 Challenge Task: Extraction of Drug-Drug Interactions from Biomedical Texts

    Get PDF
    Proceeding at: The 1st DDIExtraction-2011 Challenge Task: Extraction of Drug-Drug Interactions from Biomedical Texts. Took place September, 2011, in Huelva (Spain).We present an evaluation task designed to provide a framework for comparing different approaches to extracting drug-drug interactions from biomedical texts.We define the task, describe the training/test data, list the participating systems and discuss their results. There were 10 teams who submitted a total of 40 runs.This study was funded by the projects MA2VICMR (S2009/TIC-1542) and MULTIMEDICA (TIN2010-20644-C03-01). The organizers are particularly grate-ful to all participants who contributed to detect annotation errors in the corpus.Publicad

    Extraction and Classification of Drug-Drug Interaction from Biomedical Text Using a Two-Stage Classifier

    Get PDF
    One of the critical causes of medical errors is Drug-Drug interaction (DDI), which occurs when one drug increases or decreases the effect of another drug. We propose a machine learning system to extract and classify drug-drug interactions from the biomedical literature, using the annotated corpus from the DDIExtraction-2013 shared task challenge. Our approach applies a two-stage classifier to handle the highly unbalanced class distribution in the corpus. The first stage is designed for binary classification of drug pairs as interacting or non-interacting, and the second stage for further classification of interacting pairs into one of four interacting types: advise, effect, mechanism, and int. To find the set of best features for classification, we explored many features, including stemmed words, bigrams, part of speech tags, verb lists, parse tree information, mutual information, and similarity measures, among others. As the system faced two different classification tasks, binary and multi-class, we also explored various classifiers in each stage. Our results show that the best performing classifier in both stages was Support Vector Machines, and the best performing features were 1000 top informative words and part of speech tags between two main drugs. We obtained an F-Measure of 0.64, showing a 12% improvement over our submitted system to the DDIExtraction 2013 competition

    A two-stage deep learning approach for extracting entities and relationships from medical texts

    Get PDF
    This Work Presents A Two-Stage Deep Learning System For Named Entity Recognition (Ner) And Relation Extraction (Re) From Medical Texts. These Tasks Are A Crucial Step To Many Natural Language Understanding Applications In The Biomedical Domain. Automatic Medical Coding Of Electronic Medical Records, Automated Summarizing Of Patient Records, Automatic Cohort Identification For Clinical Studies, Text Simplification Of Health Documents For Patients, Early Detection Of Adverse Drug Reactions Or Automatic Identification Of Risk Factors Are Only A Few Examples Of The Many Possible Opportunities That The Text Analysis Can Offer In The Clinical Domain. In This Work, Our Efforts Are Primarily Directed Towards The Improvement Of The Pharmacovigilance Process By The Automatic Detection Of Drug-Drug Interactions (Ddi) From Texts. Moreover, We Deal With The Semantic Analysis Of Texts Containing Health Information For Patients. Our Two-Stage Approach Is Based On Deep Learning Architectures. Concretely, Ner Is Performed Combining A Bidirectional Long Short-Term Memory (Bi-Lstm) And A Conditional Random Field (Crf), While Re Applies A Convolutional Neural Network (Cnn). Since Our Approach Uses Very Few Language Resources, Only The Pre-Trained Word Embeddings, And Does Not Exploit Any Domain Resources (Such As Dictionaries Or Ontologies), This Can Be Easily Expandable To Support Other Languages And Clinical Applications That Require The Exploitation Of Semantic Information (Concepts And Relationships) From Texts...This work was supported by the Research Program of the Ministry of Economy and Competitiveness - Government of Spain, (DeepEMR project TIN2017-87548-C2-1-R)

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Using a shallow linguistic kernel for drug-drug interaction extraction

    Get PDF
    A drug–drug interaction (DDI) occurs when one drug influences the level or activity of another drug. Information Extraction (IE) techniques can provide health care professionals with an interesting way to reduce time spent reviewing the literature for potential drug–drug interactions. Nevertheless, no approach has been proposed to the problem of extracting DDIs in biomedical texts. In this article, we study whether a machine learning-based method is appropriate for DDI extraction in biomedical texts and whether the results provided are superior to those obtained from our previously proposed pattern-based approach [1]. The method proposed here for DDI extraction is based on a supervised machine learning technique, more specifically, the shallow linguistic kernel proposed in Giuliano et al. (2006) [2]. Since no benchmark corpus was available to evaluate our approach to DDI extraction, we created the first such corpus, DrugDDI, annotated with 3169 DDIs. We performed several experiments varying the configuration parameters of the shallow linguistic kernel. The model that maximizes the F-measure was evaluated on the test data of the DrugDDI corpus, achieving a precision of 51.03%, a recall of 72.82% and an F-measure of 60.01%. To the best of our knowledge, this work has proposed the first full solution for the automatic extraction of DDIs from biomedical texts. Our study confirms that the shallow linguistic kernel outperforms our previous pattern-based approach. Additionally, it is our hope that the DrugDDI corpus will allow researchers to explore new solutions to the DDI extraction problem.This study was funded by the Projects MA2VICMR (S2009/TIC-1542) and MULTIMEDICA (TIN2010-20644-C03-01).Publicad

    Application of information extraction techniques to pharmacological domain : extracting drug-drug interactions

    Get PDF
    Una interacción farmacológica ocurre cuando los efectos de un fármaco se modifican por la presencia de otro. Las consecuencias pueden ser perjudiciales si la interacción causa un aumento de la toxicidad del fármaco o la disminución de su efecto, pudiendo provocar incluso la muerte del paciente en los peores casos. Las interacciones farmacológicas no sólo suponen un grave problema para la seguridad del paciente, sino que además también conllevan un importante incremento en el gasto médico. En la actualidad, el personal sanitario tiene a su disposición diversas bases de datos sobre interacciones que permiten evitar posibles interacciones a la hora de prescribir un determinado tratamiento, sin embargo, estas bases de datos no están completas. Por este motivo, médicos y farmacéuticos se ven obligados a revisar una gran cantidad de artículos científicos e informes sobre seguridad de medicamentos para estar al día de todo lo publicado en relación al tema. Desgraciadamente, el gran volumen de información al respecto hace que estos profesionales estén desbordados ante tal avalancha. El desarrollo de métodos automáticos que permitan recopilar, mantener e interpretar toda esta información es crucial a la hora de conseguir una mejora real en la detección temprana de las interacciones entre fármacos. Por tanto, la extracción de información podría reducir el tiempo empleado por el personal médico en la revisión de la literatura médica. Sin embargo, la extracción de interacciones farmacológicas a partir textos biomédicos no ha sido dirigida hasta el momento. Motivados por estos aspectos, en esta tesis hemos realizado un estudio detallado sobre diversas técnicas de extracción de información aplicadas al dominio farmacológico. Basándonos en este estudio, hemos propuesto dos aproximaciones distintas para la extracción de interacciones farmacológicas de los textos. Nuestra primera aproximación propone un enfoque híbrido, que combina análisis sintáctico superficial y la aplicación de patrones léxicos definidos por un farmacéutico. La segunda aproximación se aborda mediante aprendizaje supervisado, concretamente, el uso de métodos kernels. Además, se han desarrollado las siguientes tareas auxiliares: (1) el análisis de los textos utilizando la herramienta UMLS MetaMap Transfer (MMTx), que proporciona información sintáctica y semántica, (2) un proceso para identificar y clasificar los nombres de fármacos que ocurren en los textos, y (3) un proceso para reconoger las expresiones anafóricas que se refieren a fármacos. Un prototipo ha sido desarrollado para integrar y combinar las distintas técnicas propuestas en esta tesis. Para la evaluación de las dos propuestas, con la ayuda de un farmacéutico desarrollamos y anotamos un corpus con interacciones farmacológicas. El corpus DrugDDI es una de las principales aportaciones de la tesis, ya que es el primer corpus en el dominio biomédico anotado con este tipo de información y porque creemos que puede alentar la investigación sobre extracción de información en el dominio farmacológico. Los experimentos realizados demuestran que el enfoque basado en kernels consigue mejores resultados que los reportados por el enfoque que utiliza información sintáctica y patrones léxicos. Además, los kernels consiguen resultados comparables a los obtenidos en dominios similares como son las interacciones entre proteínas. Esta tesis se ha llevado a cabo en el marco del consorcio de investigación MAVIRCM (Mejorando el acceso y visibilidad de la información multilingüe en red para la Comunidad de Madrid, www.mavir.net) dentro del Programa de Actividades de I+D en Tecnologías 2005-2008 de la Comunidad de Madrid (S-0505/TIC-0267) así como en el proyecto de investigación BRAVO: ”Búsqueda de Respuestas Avanzada Multimodal y Multilingüe” (TIN2007-67407-C03-01).----------------------------------------------------------------------------------------A drug-drug interaction occurs when one drug influences the level or activity of another drug. The detection of drug interactions is an important research area in patient safety since these interactions can become very dangerous and increase health care costs. Although there are different databases supporting health care professionals in the detection of drug interactions, this kind of resource is rarely complete. Drug interactions are frequently reported in journals of clinical pharmacology, making medical literature the most effective source for the detection of drug interactions. However, the increasing volume of the literature overwhelms health care professionals trying to keep an up-to-date collection of all reported drug-drug interactions. The development of automatic methods for collecting, maintaining and interpreting this information is crucial for achieving a real improvement in their early detection. Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract drug-drug interactions from biomedical texts. In this thesis, we have conducted a detailed study on various IE techniques applied to biomedical domain. Based on this study, we have proposed two different approximations for the extraction of drug-drug interactions from texts. The first approximation proposes a hybrid approach, which combines shallow parsing and pattern matching to extract relations between drugs from biomedical texts. The second approximation is based on a supervised machine learning approach, in particular, kernel methods. In addition, we have created and annotated the first corpus, DrugDDI, annotated with drug-drug interactions, which allow us to evaluate and compare both approximations. To the best of our knowledge, the DrugDDI corpus is the only available corpus annotated for drug-drug interactions and this thesis is the first work which addresses the problem of extracting drug-drug interactions from biomedical texts. We believe the DrugDDI corpus is an important contribution because it could encourage other research groups to research into this problem. We have also defined three auxiliary processes to provide crucial information, which will be used by the aforementioned approximations. These auxiliary tasks are as follows: (1) a process for text analysis based on the UMLS MetaMap Transfer tool (MMTx) to provide shallow syntactic and semantic information from texts, (2) a process for drug name recognition and classification, and (3) a process for drug anaphora resolution. Finally, we have developed a pipeline prototype which integrates the different auxiliary processes. The pipeline architecture allows us to easily integrate these modules with each of the approaches proposed in this thesis: pattern-matching or kernels. Several experiments were performed on the DrugDDI corpus. They show that while the first approximation based on pattern matching achieves low performance, the approach based on kernel-methods achieves a performance comparable to those obtained by approaches which carry out a similar task such as the extraction of protein-protein interactions. This work has been partially supported by the Spanish research projects: MAVIR consortium (S-0505/TIC-0267, www.mavir.net), a network of excellence funded by the Madrid Regional Government and TIN2007-67407-C03-01 (BRAVO: Advanced Multimodal and Multilingual Question Answering)
    corecore