2,022 research outputs found

    Algorithms for Geometric Facility Location: Centers in a Polygon and Dispersion on a Line

    Get PDF
    We study three geometric facility location problems in this thesis. First, we consider the dispersion problem in one dimension. We are given an ordered list of (possibly overlapping) intervals on a line. We wish to choose exactly one point from each interval such that their left to right ordering on the line matches the input order. The aim is to choose the points so that the distance between the closest pair of points is maximized, i.e., they must be socially distanced while respecting the order. We give a new linear-time algorithm for this problem that produces a lexicographically optimal solution. We also consider some generalizations of this problem. For the next two problems, the domain of interest is a simple polygon with n vertices. The second problem concerns the visibility center. The convention is to think of a polygon as the top view of a building (or art gallery) where the polygon boundary represents opaque walls. Two points in the domain are visible to each other if the line segment joining them does not intersect the polygon exterior. The distance to visibility from a source point to a target point is the minimum geodesic distance from the source to a point in the polygon visible to the target. The question is: Where should a single guard be located within the polygon to minimize the maximum distance to visibility? For m point sites in the polygon, we give an O((m + n) log (m + n)) time algorithm to determine their visibility center. Finally, we address the problem of locating the geodesic edge center of a simple polygon—a point in the polygon that minimizes the maximum geodesic distance to any edge. For a triangle, this point coincides with its incenter. The geodesic edge center is a generalization of the well-studied geodesic center (a point that minimizes the maximum distance to any vertex). Center problems are closely related to farthest Voronoi diagrams, which are well- studied for point sites in the plane, and less well-studied for line segment sites in the plane. When the domain is a polygon rather than the whole plane, only the case of point sites has been addressed—surprisingly, more general sites (with line segments being the simplest example) have been largely ignored. En route to our solution, we revisit, correct, and generalize (sometimes in a non-trivial manner) existing algorithms and structures tailored to work specifically for point sites. We give an optimal linear-time algorithm for finding the geodesic edge center of a simple polygon

    Covering the Boundary of a Simple Polygon with Geodesic Unit Disks

    Full text link
    We consider the problem of covering the boundary of a simple polygon on n vertices using the minimum number of geodesic unit disks. We present an O(n \log^2 n+k) time 2-approximation algorithm for finding the centers of the disks, with k denoting the number centers found by the algorithm

    Geodesic-Preserving Polygon Simplification

    Full text link
    Polygons are a paramount data structure in computational geometry. While the complexity of many algorithms on simple polygons or polygons with holes depends on the size of the input polygon, the intrinsic complexity of the problems these algorithms solve is often related to the reflex vertices of the polygon. In this paper, we give an easy-to-describe linear-time method to replace an input polygon P\mathcal{P} by a polygon P\mathcal{P}' such that (1) P\mathcal{P}' contains P\mathcal{P}, (2) P\mathcal{P}' has its reflex vertices at the same positions as P\mathcal{P}, and (3) the number of vertices of P\mathcal{P}' is linear in the number of reflex vertices. Since the solutions of numerous problems on polygons (including shortest paths, geodesic hulls, separating point sets, and Voronoi diagrams) are equivalent for both P\mathcal{P} and P\mathcal{P}', our algorithm can be used as a preprocessing step for several algorithms and makes their running time dependent on the number of reflex vertices rather than on the size of P\mathcal{P}

    Algorithms for distance problems in planar complexes of global nonpositive curvature

    Full text link
    CAT(0) metric spaces and hyperbolic spaces play an important role in combinatorial and geometric group theory. In this paper, we present efficient algorithms for distance problems in CAT(0) planar complexes. First of all, we present an algorithm for answering single-point distance queries in a CAT(0) planar complex. Namely, we show that for a CAT(0) planar complex K with n vertices, one can construct in O(n^2 log n) time a data structure D of size O(n^2) so that, given a point x in K, the shortest path gamma(x,y) between x and the query point y can be computed in linear time. Our second algorithm computes the convex hull of a finite set of points in a CAT(0) planar complex. This algorithm is based on Toussaint's algorithm for computing the convex hull of a finite set of points in a simple polygon and it constructs the convex hull of a set of k points in O(n^2 log n + nk log k) time, using a data structure of size O(n^2 + k)

    Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

    Get PDF
    We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of nn vertices and hh holes. We introduce a \emph{graph of oriented distances} to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in min{O(nω),O(n2+nhlogh+χ2)}\min \{\,O(n^\omega), O(n^2 + nh \log h + \chi^2)\,\} time, where ω<2.373\omega<2.373 denotes the matrix multiplication exponent and χΩ(n)O(n2)\chi\in \Omega(n)\cap O(n^2) is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in O(n2logn)O(n^2 \log n) time
    corecore