1,895 research outputs found

    Design architectures of the CMOS power amplifier for 2.4 GHz ISM band applications: An overview

    Get PDF
    Power amplifiers (PAs) are among the most crucial functional blocks in the radio frequency (RF) frontend for reliable wireless communication. PAs amplify and boost the input signal to the required output power. The signal is amplified to make it sufficiently high for the transmitter to propagate the required distance to the receiver. Attempted advancements of PA have focused on attaining high-performance RF signals for transmitters. Such PAs are expected to require low power consumption while producing a relatively high output power with a high efficiency. However, current PA designs in nanometer and micrometer complementary metal–oxide semiconductor (CMOS) technology present inevitable drawbacks, such as oxide breakdown and hot electron effect. A well-defined architecture, including a linear and simple functional block synthesis, is critical in designing CMOS PA for various applications. This article describes the different state-of-the art design architectures of CMOS PA, including their circuit operations, and analyzes the performance of PAs for 2.4 GHz ISM (industrial, scientific, and medical) band applications

    Digital Offset Calibration of an OPAMP Towards Improving Static Parameters of 90 nm CMOS DAC

    Get PDF
    In this paper, an on-chip self-calibrated 8-bit R-2R digital-to-analog converter (DAC) based on digitally compensated input offset of the operational amplifier (OPAMP) is presented. To improve the overall DAC performance, a digital offset cancellation method was used to compensate deviations in the input offset voltage of the OPAMP caused by process variations. The whole DAC as well as offset compensation circuitry were designed in a standard 90 nm CMOS process. The achieved results show that after the self-calibration process, the improvement of 48% in the value of DAC offset error is achieved

    CMOS Power Amplifiers for Wireless Communication Systems

    Get PDF

    Microwave Characteristics of an Independently Biased 3-stack InGaP/GaAs HBT Configuration

    Get PDF
    This paper investigates various important microwave characteristics of an independently biased 3-stack InGaP/GaAs heterojunction bipolar transistor (HBT) monolithic microwave integrated circuit (MMIC) chip at both small-signal and large-signal operation. By taking the advantage of the independently biased functionality, bias condition for individual transistor can be adjusted flexibly, resulting in the ability of independent control for both small-signal and large-signal performances. It was found that at small-signal operation stability and isolation characteristics of the proposed configuration can be significantly improved by controlling bias condition of the second-stage and the third-stage transistors while at large-signal operation its linearity and power gain can be improved through controlling the bias condition of the first-stage and the third-stage transistors. To demonstrate the benefits of using such an independently biased configuration, a measured optimum large-signal performance at an operation frequency of 1.6 GHz under an optimum bias condition for the high gain, low distortion were obtained as: PAE = 23.5 %, Pout = 12 dBm; Gain = 32.6 dB at IMD3 = -35 dBc. Moreover, to demonstrate the superior advantage of the proposed configuration, its small-signal and large-signal performance were also compared to that of a single stage common-emitter, a conventional 2-stack, an independently biased 2-stack and a conventional 3-stack configuration. The compared results showed that the independently biased 3-stack is the best candidate among the configurations for various wireless communications applications

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Mask Programmable CMOS Transistor Arrays for Wideband RF Integrated Circuits

    Get PDF
    A mask programmable technology to implement RF and microwave integrated circuits using an array of standard 90-nm CMOS transistors is presented. Using this technology, three wideband amplifiers with more than 15-dB forward transmission gain operating in different frequency bands inside a 4-22-GHz range are implemented. The amplifiers achieve high gain-bandwidth products (79-96 GHz) despite their standard multistage designs. These amplifiers are based on an identical transistor array interconnected with application specific coplanar waveguide (CPW) transmission lines and on-chip capacitors and resistors. CPW lines are implemented using a one-metal-layer post-processing technology over a thick Parylene-N (15 mum ) dielectric layer that enables very low loss lines (~0.6 dB/mm at 20 GHz) and high-performance CMOS amplifiers. The proposed integration approach has the potential for implementing cost-efficient and high-performance RF and microwave circuits with a short turnaround time

    Output Power Control in Class-E Power Amplifiers

    Get PDF

    Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier

    Get PDF
    Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz

    Systematic Comparison of HF CMOS Transconductors

    Get PDF
    Transconductors are commonly used as active elements in high-frequency (HF) filters, amplifiers, mixers, and oscillators. This paper reviews transconductor design by focusing on the V-I kernel that determines the key transconductor properties. Based on bandwidth considerations, simple V-I kernels with few or no internal nodes are preferred. In a systematic way, virtually all simple kernels published in literature are generated. This is done in two steps: 1) basic 3-terminal transconductors are covered and 2) then five different techniques to combine two of them in a composite V-I kernel. In order to compare transconductors in a fair way, a normalized signal-to-noise ratio (NSNR) is defined. The basic V-I kernels and the five classes of composite V-I kernels are then compared, leading to insight in the key mechanisms that affect NSNR. Symbolic equations are derived to estimate NSNR, while simulations with more advanced MOSFET models verify the results. The results show a strong tradeoff between NSNR and transconductance tuning range. Resistively generated MOSFETs render the best NSNR results and are robust for future technology developments

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes
    • 

    corecore