51 research outputs found

    Multi-resolution adaptation of the SPIHT algorithm for multiple description

    Get PDF
    Multiple description codes are data compression algorithms designed with the goal of minimizing the distortion caused by data loss in packet-based or diversity communications systems. Recently, techniques that achieve multiple description coding by combining embedded source codes with unequal error protection channel codes have become popular in the literature. These codes allow for data reconstruction with any subset of the transmitted packets and achieve progressively better source reconstructions as more and more packets are decoded. The given methods may be applied to any embedded source description. While applicability to all embedded source codes provides great flexibility, this separation approach begs the question of whether better performance could be achieved by taking advantage of the internal structure of a particular embedded code. In this paper, we investigate an extremely simple method for using an embedded source code's internal state information in the construction of a multiple description code. In particular, we protect an embedded SPIHT bitstream by adding to that bitstream periodic descriptions of state information from the encoder, and we demonstrate how the state information can be used to recover lost bits. For low probabilities of network packet loss, the proposed algorithm achieves performance within 0.35 dB of the performance of a more sophisticated channel coding algorithm when both algorithms are applied to same SPIHT embedded source code

    Optimal packet loss protection of progressively compressed 3D meshes

    Get PDF
    ©20009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.We consider a state of the art system that uses layered source coding and forward error correction with Reed- Solomon codes to efficiently transmit 3D meshes over lossy packet networks. Given a transmission bit budget, the performance of this system can be optimized by determining how many layers should be sent, how each layer should be packetized, and how many parity bits should be allocated to each layer such that the expected distortion at the receiver is minimum. The previous solution for this optimization problem uses exhaustive search, which is not feasible when the transmission bit budget is large.We propose instead an exact algorithm that solves this optimization problem in linear time and space. We illustrate the advantages of our approach by providing experimental results for the CPM (Compressed Progressive Meshes) mesh compression techniqueDFG Research Training Group GK-1042

    Optimal Error Protection of Progressively Compressed 3D Meshes

    Full text link
    Given a number of available layers of source data and a transmission bit budget, we propose an algorithm that determines how many layers should be sent and how many protection bits should be allocated to each transmitted layer such that the expected distortion at the receiver is minimum. The algorithm is used for robust transmission of progressively compressed 3D models over a packet erasure channel. In contrast to the previous approach, which uses exhaustive search, the time complexity of our algorithm is linear in the transmission bit budget

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams

    Video transmission over wireless networks

    Get PDF
    Compressed video bitstream transmissions over wireless networks are addressed in this work. We first consider error control and power allocation for transmitting wireless video over CDMA networks in conjunction with multiuser detection. We map a layered video bitstream to several CDMA fading channels and inject multiple source/parity layers into each of these channels at the transmitter. We formulate a combined optimization problem and give the optimal joint rate and power allocation for each of linear minimum mean-square error (MMSE) multiuser detector in the uplink and two types of blind linear MMSE detectors, i.e., the direct-matrix-inversion (DMI) blind detector and the subspace blind detector, in the downlink. We then present a multiple-channel video transmission scheme in wireless CDMA networks over multipath fading channels. For a given budget on the available bandwidth and total transmit power, the transmitter determines the optimal power allocations and the optimal transmission rates among multiple CDMA channels, as well as the optimal product channel code rate allocation. We also make use of results on the large-system CDMA performance for various multiuser receivers in multipath fading channels. We employ a fast joint source-channel coding algorithm to obtain the optimal product channel code structure. Finally, we propose an end-to-end architecture for multi-layer progressive video delivery over space-time differentially coded orthogonal frequency division multiplexing (STDC-OFDM) systems. We propose to use progressive joint source-channel coding to generate operational transmission distortion-power-rate (TD-PR) surfaces. By extending the rate-distortion function in source coding to the TD-PR surface in joint source-channel coding, our work can use the ??equal slope?? argument to effectively solve the transmission rate allocation problem as well as the transmission power allocation problem for multi-layer video transmission. It is demonstrated through simulations that as the wireless channel conditions change, these proposed schemes can scale the video streams and transport the scaled video streams to receivers with a smooth change of perceptual quality
    • …
    corecore