160 research outputs found

    Model-Based Performance Prediction for Concurrent Software on Multicore Architectures

    Get PDF
    Model-based performance prediction is a well-known concept to ensure the quality of software.Current approaches are based on a single-metric model, which leads to inaccurate predictions for modern architectures. This thesis presents a multi-strategies approach to extend performance prediction models to support multicore architectures.We implemented the strategies into Palladio and significantly increased the performance prediction power

    Session Types in a Linearly Typed Multi-Threaded Lambda-Calculus

    Full text link
    We present a formalization of session types in a multi-threaded lambda-calculus (MTLC) equipped with a linear type system, establishing for the MTLC both type preservation and global progress. The latter (global progress) implies that the evaluation of a well-typed program in the MTLC can never reach a deadlock. As this formulated MTLC can be readily embedded into ATS, a full-fledged language with a functional programming core that supports both dependent types (of DML-style) and linear types, we obtain a direct implementation of session types in ATS. In addition, we gain immediate support for a form of dependent session types based on this embedding into ATS. Compared to various existing formalizations of session types, we see the one given in this paper is unique in its closeness to concrete implementation. In particular, we report such an implementation ready for practical use that generates Erlang code from well-typed ATS source (making use of session types), thus taking great advantage of the infrastructural support for distributed computing in Erlang.Comment: This is the original version of the paper on supporting programming with dyadic session types in AT

    To boldly go:an occam-Ļ€ mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time

    Terrier: an embedded operating system using advanced types for safety

    Get PDF
    Operating systems software is fundamental to modern computer systems: all other applications are dependent upon the correct and timely provision of basic system services. At the same time, advances in programming languages and type theory have lead to the creation of functional programming languages with type systems that are designed to combine theorem proving with practical systems programming. The Terrier operating system project focuses on low-level systems programming in the context of a multi-core, real-time, embedded system, while taking advantage of a dependently typed programming language named ATS to improve reliability. Terrier is a new point in the design space for an operating system, one that leans heavily on an associated programming language, ATS, to provide safety that has traditionally been in the scope of hardware protection and kernel privilege. Terrier tries to have far fewer abstractions between program and hardware. The purpose of Terrier is to put programs as much in contact with the real hardware, real memory, and real timing constraints as possible, while still retaining the ability to multiplex programs and provide for a reasonable level of safety through static analysis
    • ā€¦
    corecore