988 research outputs found

    A tabu search heuristic based on k-diamonds for the weighted feedback vertex set problem

    No full text
    Given an undirected and vertex weighted graph G = (V,E,w), the Weighted Feedback Vertex Problem (WFVP) consists of finding a subset F ⊆ V of vertices of minimum weight such that each cycle in G contains at least one vertex in F. The WFVP on general graphs is known to be NP-hard and to be polynomially solvable on some special classes of graphs (e.g., interval graphs, co-comparability graphs, diamond graphs). In this paper we introduce an extension of diamond graphs, namely the k-diamond graphs, and give a dynamic programming algorithm to solve WFVP in linear time on this class of graphs. Other than solving an open question, this algorithm allows an efficient exploration of a neighborhood structure that can be defined by using such a class of graphs. We used this neighborhood structure inside our Iterated Tabu Search heuristic. Our extensive experimental show the effectiveness of this heuristic in improving the solution provided by a 2-approximate algorithm for the WFVPon general graphs

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    Exact Localisations of Feedback Sets

    Full text link
    The feedback arc (vertex) set problem, shortened FASP (FVSP), is to transform a given multi digraph G=(V,E)G=(V,E) into an acyclic graph by deleting as few arcs (vertices) as possible. Due to the results of Richard M. Karp in 1972 it is one of the classic NP-complete problems. An important contribution of this paper is that the subgraphs Gel(e)G_{\mathrm{el}}(e), Gsi(e)G_{\mathrm{si}}(e) of all elementary cycles or simple cycles running through some arc eEe \in E, can be computed in O(E2)\mathcal{O}\big(|E|^2\big) and O(E4)\mathcal{O}(|E|^4), respectively. We use this fact and introduce the notion of the essential minor and isolated cycles, which yield a priori problem size reductions and in the special case of so called resolvable graphs an exact solution in O(VE3)\mathcal{O}(|V||E|^3). We show that weighted versions of the FASP and FVSP possess a Bellman decomposition, which yields exact solutions using a dynamic programming technique in times O(2mE4log(V))\mathcal{O}\big(2^{m}|E|^4\log(|V|)\big) and O(2nΔ(G)4V4log(E))\mathcal{O}\big(2^{n}\Delta(G)^4|V|^4\log(|E|)\big), where mEV+1m \leq |E|-|V| +1, n(Δ(G)1)VE+1n \leq (\Delta(G)-1)|V|-|E| +1, respectively. The parameters m,nm,n can be computed in O(E3)\mathcal{O}(|E|^3), O(Δ(G)3V3)\mathcal{O}(\Delta(G)^3|V|^3), respectively and denote the maximal dimension of the cycle space of all appearing meta graphs, decoding the intersection behavior of the cycles. Consequently, m,nm,n equal zero if all meta graphs are trees. Moreover, we deliver several heuristics and discuss how to control their variation from the optimum. Summarizing, the presented results allow us to suggest a strategy for an implementation of a fast and accurate FASP/FVSP-SOLVER

    Kernelization for Counting Problems on Graphs: Preserving the Number of Minimum Solutions

    Full text link
    A kernelization for a parameterized decision problem Q\mathcal{Q} is a polynomial-time preprocessing algorithm that reduces any parameterized instance (x,k)(x,k) into an instance (x,k)(x',k') whose size is bounded by a function of kk alone and which has the same yes/no answer for Q\mathcal{Q}. Such preprocessing algorithms cannot exist in the context of counting problems, when the answer to be preserved is the number of solutions, since this number can be arbitrarily large compared to kk. However, we show that for counting minimum feedback vertex sets of size at most kk, and for counting minimum dominating sets of size at most kk in a planar graph, there is a polynomial-time algorithm that either outputs the answer or reduces to an instance (G,k)(G',k') of size polynomial in kk with the same number of minimum solutions. This shows that a meaningful theory of kernelization for counting problems is possible and opens the door for future developments. Our algorithms exploit that if the number of solutions exceeds 2poly(k)2^{\mathsf{poly}(k)}, the size of the input is exponential in terms of kk so that the running time of a parameterized counting algorithm can be bounded by poly(n)\mathsf{poly}(n). Otherwise, we can use gadgets that slightly increase kk to represent choices among 2O(k)2^{O(k)} options by only poly(k)\mathsf{poly}(k) vertices.Comment: Extended abstract appears in the proceedings of IPEC 202

    A polynomial kernel for Block Graph Deletion

    Get PDF
    In the Block Graph Deletion problem, we are given a graph GG on nn vertices and a positive integer kk, and the objective is to check whether it is possible to delete at most kk vertices from GG to make it a block graph, i.e., a graph in which each block is a clique. In this paper, we obtain a kernel with O(k6)\mathcal{O}(k^{6}) vertices for the Block Graph Deletion problem. This is a first step to investigate polynomial kernels for deletion problems into non-trivial classes of graphs of bounded rank-width, but unbounded tree-width. Our result also implies that Chordal Vertex Deletion admits a polynomial-size kernel on diamond-free graphs. For the kernelization and its analysis, we introduce the notion of `complete degree' of a vertex. We believe that the underlying idea can be potentially applied to other problems. We also prove that the Block Graph Deletion problem can be solved in time 10knO(1)10^{k}\cdot n^{\mathcal{O}(1)}.Comment: 22 pages, 2 figures, An extended abstract appeared in IPEC201

    Towards Constant-Factor Approximation for Chordal / Distance-Hereditary Vertex Deletion

    Get PDF
    For a family of graphs ?, Weighted ?-Deletion is the problem for which the input is a vertex weighted graph G = (V, E) and the goal is to delete S ? V with minimum weight such that G?S ? ?. Designing a constant-factor approximation algorithm for large subclasses of perfect graphs has been an interesting research direction. Block graphs, 3-leaf power graphs, and interval graphs are known to admit constant-factor approximation algorithms, but the question is open for chordal graphs and distance-hereditary graphs. In this paper, we add one more class to this list by presenting a constant-factor approximation algorithm when ? is the intersection of chordal graphs and distance-hereditary graphs. They are known as ptolemaic graphs and form a superset of both block graphs and 3-leaf power graphs above. Our proof presents new properties and algorithmic results on inter-clique digraphs as well as an approximation algorithm for a variant of Feedback Vertex Set that exploits this relationship (named Feedback Vertex Set with Precedence Constraints), each of which may be of independent interest

    Hitting forbidden minors: Approximation and Kernelization

    Get PDF
    We study a general class of problems called F-deletion problems. In an F-deletion problem, we are asked whether a subset of at most kk vertices can be deleted from a graph GG such that the resulting graph does not contain as a minor any graph from the family F of forbidden minors. We obtain a number of algorithmic results on the F-deletion problem when F contains a planar graph. We give (1) a linear vertex kernel on graphs excluding tt-claw K1,tK_{1,t}, the star with tt leves, as an induced subgraph, where tt is a fixed integer. (2) an approximation algorithm achieving an approximation ratio of O(log3/2OPT)O(\log^{3/2} OPT), where OPTOPT is the size of an optimal solution on general undirected graphs. Finally, we obtain polynomial kernels for the case when F contains graph θc\theta_c as a minor for a fixed integer cc. The graph θc\theta_c consists of two vertices connected by cc parallel edges. Even though this may appear to be a very restricted class of problems it already encompasses well-studied problems such as {\sc Vertex Cover}, {\sc Feedback Vertex Set} and Diamond Hitting Set. The generic kernelization algorithm is based on a non-trivial application of protrusion techniques, previously used only for problems on topological graph classes
    corecore