677 research outputs found

    Recognizing and Drawing IC-planar Graphs

    Full text link
    IC-planar graphs are those graphs that admit a drawing where no two crossed edges share an end-vertex and each edge is crossed at most once. They are a proper subfamily of the 1-planar graphs. Given an embedded IC-planar graph GG with nn vertices, we present an O(n)O(n)-time algorithm that computes a straight-line drawing of GG in quadratic area, and an O(n3)O(n^3)-time algorithm that computes a straight-line drawing of GG with right-angle crossings in exponential area. Both these area requirements are worst-case optimal. We also show that it is NP-complete to test IC-planarity both in the general case and in the case in which a rotation system is fixed for the input graph. Furthermore, we describe a polynomial-time algorithm to test whether a set of matching edges can be added to a triangulated planar graph such that the resulting graph is IC-planar

    On the Recognition of Fan-Planar and Maximal Outer-Fan-Planar Graphs

    Full text link
    Fan-planar graphs were recently introduced as a generalization of 1-planar graphs. A graph is fan-planar if it can be embedded in the plane, such that each edge that is crossed more than once, is crossed by a bundle of two or more edges incident to a common vertex. A graph is outer-fan-planar if it has a fan-planar embedding in which every vertex is on the outer face. If, in addition, the insertion of an edge destroys its outer-fan-planarity, then it is maximal outer-fan-planar. In this paper, we present a polynomial-time algorithm to test whether a given graph is maximal outer-fan-planar. The algorithm can also be employed to produce an outer-fan-planar embedding, if one exists. On the negative side, we show that testing fan-planarity of a graph is NP-hard, for the case where the rotation system (i.e., the cyclic order of the edges around each vertex) is given

    Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time

    Full text link
    Thomassen characterized some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph is drawable in straight-lines if and only if it does not contain the configuration [C. Thomassen, Rectilinear drawings of graphs, J. Graph Theory, 10(3), 335-341, 1988]. In this paper, we characterize some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph can be re-embedded into a straight-line drawable 1-plane embedding of the same graph if and only if it does not contain the configuration. Re-embedding of a 1-plane embedding preserves the same set of pairs of crossing edges. We give a linear-time algorithm for finding a straight-line drawable 1-plane re-embedding or the forbidden configuration.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016). This is an extended abstract. For a full version of this paper, see Hong S-H, Nagamochi H.: Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time, Technical Report TR 2016-002, Department of Applied Mathematics and Physics, Kyoto University (2016

    Detecting Weakly Simple Polygons

    Full text link
    A closed curve in the plane is weakly simple if it is the limit (in the Fr\'echet metric) of a sequence of simple closed curves. We describe an algorithm to determine whether a closed walk of length n in a simple plane graph is weakly simple in O(n log n) time, improving an earlier O(n^3)-time algorithm of Cortese et al. [Discrete Math. 2009]. As an immediate corollary, we obtain the first efficient algorithm to determine whether an arbitrary n-vertex polygon is weakly simple; our algorithm runs in O(n^2 log n) time. We also describe algorithms that detect weak simplicity in O(n log n) time for two interesting classes of polygons. Finally, we discuss subtle errors in several previously published definitions of weak simplicity.Comment: 25 pages and 13 figures, submitted to SODA 201

    Planarity of Streamed Graphs

    Full text link
    In this paper we introduce a notion of planarity for graphs that are presented in a streaming fashion. A streamed graph\textit{streamed graph} is a stream of edges e1,e2,...,eme_1,e_2,...,e_m on a vertex set VV. A streamed graph is ω\omega-stream planar\textit{stream planar} with respect to a positive integer window size ω\omega if there exists a sequence of planar topological drawings Γi\Gamma_i of the graphs Gi=(V,{ej∣i≤j<i+ω})G_i=(V,\{e_j \mid i\leq j < i+\omega\}) such that the common graph G∩i=Gi∩Gi+1G^{i}_\cap=G_i\cap G_{i+1} is drawn the same in Γi\Gamma_i and in Γi+1\Gamma_{i+1}, for 1≤i<m−ω1\leq i < m-\omega. The Stream Planarity\textit{Stream Planarity} Problem with window size ω\omega asks whether a given streamed graph is ω\omega-stream planar. We also consider a generalization, where there is an additional backbone graph\textit{backbone graph} whose edges have to be present during each time step. These problems are related to several well-studied planarity problems. We show that the Stream Planarity\textit{Stream Planarity} Problem is NP-complete even when the window size is a constant and that the variant with a backbone graph is NP-complete for all ω≥2\omega \ge 2. On the positive side, we provide O(n+ωm)O(n+\omega{}m)-time algorithms for (i) the case ω=1\omega = 1 and (ii) all values of ω\omega provided the backbone graph consists of one 22-connected component plus isolated vertices and no stream edge connects two isolated vertices. Our results improve on the Hanani-Tutte-style O((nm)3)O((nm)^3)-time algorithm proposed by Schaefer [GD'14] for ω=1\omega=1.Comment: 21 pages, 9 figures, extended version of "Planarity of Streamed Graphs" (9th International Conference on Algorithms and Complexity, 2015
    • …
    corecore